Skip to main content
Log in

Effect of boundary scattering on the thermal conductivity of a nanostructured semiconductor material based on the Bi x Sb2 − x Te3 solid solution

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on a theoretical and experimental investigation of the behavior of the electrical and thermal conductivities of a nanostructured material based on Bi x Sb2 − x Te3 solid solutions. The effect of boundary scattering has been taken into account by introducing the scattering mechanism with a constant mean free path equal to the nanoparticle size. A comparison with the results of the measurements has demonstrated that one can describe satisfactorily the experimental dependences of the electrical and thermal conductivities on the nanoparticle size by using only the parameters of the initial solid solution and its pure constituents. The estimates have revealed that the lattice thermal conductivity of nanostructured materials can be reduced by 20–30% as compared to the initial solid solution with nanoparticle sizes of the order of 20 nm, which should produce a favorable effect on the magnitude of the thermoelectric figure-of-merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Zh. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. (Weinheim) 19, 1043 (2007).

    Article  Google Scholar 

  2. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science (Washington) 297, 2229 (2002).

    Article  ADS  Google Scholar 

  3. R. Venkatasubramanian, E. Silvota, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001).

    Article  ADS  Google Scholar 

  4. T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, J. Electron. Mater. 29, L1–4 (2000).

    Article  ADS  Google Scholar 

  5. B. Poudel, Q. Hao, T. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Zh. Ren, Science (Washington) 320, 634 (2008).

    Article  ADS  Google Scholar 

  6. L. P. Bulat, V. B. Osvensky, G. I. Pivovarov, A. A. Snarskii, E. V. Tatyanin, and A. A. O. Tay, in Proceedings of the Sixth European Conference on Thermoelectrics, Paris, France, 2008 (Paris, 2008), p. I2–1.

  7. L. P. Bulat, I. A. Drabkin, V. B. Osvenskiĭ, G. I. Pivovarov, A. A. Snarskiĭ, and E. V. Tat’yanin, in Proceedings of the International Workshop “Thermoelectrics and Their Applications,” Ioffe Physicothechnical Institute, Russian Academy of Sciences, St. Petersburg, Russia, 2008 (St. Petersburg, 2008), p. 39.

  8. L. P. Bulat, V. T. Bublik, I. A. Drabkin, V. V. Karatayev, V. B. Osvensky, G. I. Pivovarov, D. A. Pshenai-Severin, E. V. Tatyanin, and N. Yu. Tabachkova, J. Thermoelectr., No. 3, 67 (2009).

  9. H. J. Goldsmid, H. B. Lyon, and E. H. Volckmann, in Proceedings of the 14th IEEE International Conference on Thermoelectrics, St. Petersburg, Russia, 1995 (St. Petersburg, 1995), p. 16.

  10. J. M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960; Nauka, Moscow, 1962).

    MATH  Google Scholar 

  11. J. Callawat, Phys. Rev. 113, 1046 (1959).

    Article  ADS  Google Scholar 

  12. B. M. Mogilevskaya and A. F. Chudnovskiĭ, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  13. O. Madelung, Introduction to Solid-State Theory (Springer, Berlin, 1978; Nauka, Moscow, 1980).

    Google Scholar 

  14. J. R. Drabble and R. Wolfe, Proc. Phys. Soc., London, Sect. B 69, 1101 (1956).

    Article  ADS  Google Scholar 

  15. Yu. I. Ravich, Amorphous Materials, Alloys, and Heterogeneous Media (St. Petersburg State University, St. Petersburg, 1995) [in Russian].

    Google Scholar 

  16. J. W. Sharp, S. L. Poon, and H. J. Goldsmid, Phys. Status Solidi A 187, 507 (2001).

    Article  ADS  Google Scholar 

  17. L. N. Luk’yanova, V. A. Kutasov, P. P. Konstantinov, and V. V. Popov, Fiz. Tverd. Tela (St. Petersburg) 52(8), 1492 (2010) [Phys. Solid State 52 (8), (2010) (in press)].

    Google Scholar 

  18. M. Stordeur, M. Stoelzer, H. Sobotta, and V. Riede, Phys. Status Solidi B 150, 165 (1988).

    Article  ADS  Google Scholar 

  19. B. M. Gol’tsman, V. A. Kudinov, and I. A. Smirnov, Semiconductor Thermoelectric Materials. Based on Bi 2 Te (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  20. K. Stecker, H. Süssmann, W. Eichler, W. Heiliger, and M. Stordeur, Wiss. Z.-Martin-Luther-Univ. Halle-Wittenberg, Math-Naturwiss. Reihe R27(5), 5 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Bulat.

Additional information

Original Russian Text © L.P. Bulat, I.A. Drabkin, V.V. Karataev, V.B. Osvenskiĭ, D.A. Pshenaĭ-Severin, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 9, pp. 1712–1716.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulat, L.P., Drabkin, I.A., Karataev, V.V. et al. Effect of boundary scattering on the thermal conductivity of a nanostructured semiconductor material based on the Bi x Sb2 − x Te3 solid solution. Phys. Solid State 52, 1836–1841 (2010). https://doi.org/10.1134/S1063783410090088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410090088

Keywords

Navigation