Skip to main content
Log in

Anisotropy of longitudinal ultrasonic absorption in anharmonic processes of scattering in Ge, Si, InSb, MgO, and KCl cubic crystals: The role of damping of phonon states

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The relaxation of longitudinal phonons and absorption of ultrasound in cubic crystals with positive (Ge, Si, InSb, MgO) and negative (KCl) anisotropies of the second-order elastic moduli have been investigated. The scattering processes occurring with the participation of three longitudinal phonons (the LLL mechanism) and the processes of scattering of a longitudinal phonon by two transverse thermal phonons (the LTT mechanism) have been considered in terms of the anisotropic-continuum model. The influence of damping of phonon states on the anisotropy of longitudinal ultrasonic absorption has been examined. The specific features of phonon scattering and the influence of anisotropy of the harmonic and anharmonic energies of the cubic crystals on the ultrasonic absorption have been analyzed. In contrast to the previously performed calculations, the influence of cubic anisotropy of the harmonic and anharmonic energies of the phonon system on the relaxation processes has been exactly taken into account in the present study. The results of the calculations have been compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. de Klerk and P. G. Klemens, Phys. Rev. 147, 585 (1966).

    Article  ADS  Google Scholar 

  2. M. Pomerantz, Phys. Rev. [Sect.] A 139, 501 (1965).

    ADS  Google Scholar 

  3. K. R. Keller, J. Appl. Phys. 38, 9 (1967).

    Article  Google Scholar 

  4. I. S. Ciccarello and K. Dransfeld, Phys. Rev. A 134, 1517 (1964).

    Article  ADS  Google Scholar 

  5. P. J. King and H. M. Rosenberg, Proc. R. Soc. London, Ser. A 315, 369 (1970).

    Article  ADS  Google Scholar 

  6. A. A. Bulgakov, V. V. Tarakanov, and F. N. Chernets, Fiz. Tverd. Tela (Leningrad) 15(6), 1915 (1973) [Sov. Phys. Solid State 15 (6), 1280 (1973)].

    Google Scholar 

  7. J. P. Kalejs and H. J. Maris, J. Appl. Phys. 41, 460 (1970).

    Article  ADS  Google Scholar 

  8. V. V. Lemanov and G. A. Smolenskiĭ, Usp. Fiz. Nauk 108, 465 (1972) [Sov. Phys.—Usp. 15, 708 (1972)].

    Google Scholar 

  9. S. L. McBride, H. J. Maris, and R. Truel, J. Acoust. Soc. Am. 45, 1385 (1969).

    Article  ADS  Google Scholar 

  10. J. N. Lange, Phys. Rev. 176, 1030 (1968).

    Article  ADS  Google Scholar 

  11. H. J. Maris, Physical Acoustics (Academic, New York, 1971), Vol. VIII, p. 280.

    Google Scholar 

  12. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Sold State Physics (Academic, New York, 1969).

    Google Scholar 

  13. J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, The Netherlands, 1971; Mir, Moscow, 1975).

    Google Scholar 

  14. H. J. Maris, Philos. Mag. 9, 901 (1964).

    Article  ADS  Google Scholar 

  15. W. P. Mason, Physical Acoustics (Academic, New York, 1965), Vol. III, Part B, p. 235.

    Google Scholar 

  16. V. L. Gurevich, Fiz. Tverd. Tela (Leningrad) 9(2), 526 (1967) [Sov. Phys. Solid State 9 (2), 401 (1967)].

    Google Scholar 

  17. V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  18. C. Herring, Phys. Rev. 95(4), 954 (1954).

    Article  MATH  ADS  Google Scholar 

  19. S. Simons, Proc. Cambridge Philos. Soc. 53, 702 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  20. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965; Plenum, New York, 1968).

    Google Scholar 

  21. I. G. Kuleev and I. I. Kuleev, Fiz. Tverd. Tela (St. Petersburg) 49(3), 422 (2007) [Phys. Solid State 49 (3), 437 (2007)].

    Google Scholar 

  22. I. G. Kuleev, I. I. Kuleev, and I. Yu. Arapova, J. Phys.: Condens. Matter 20, 465201 (2008).

    Article  ADS  Google Scholar 

  23. I. G. Kuleyev, I. I. Kuleyev, and I. Yu. Arapova, Fiz. Tverd. Tela (St. Petersburg) 51(5), 846 (2009) [Phys. Solid State 51 (5), 892 (2009)].

    Google Scholar 

  24. L. Landau and J. Rumer, Phys. Z. Sowjetunion 11(1), 18 (1937).

    MATH  Google Scholar 

  25. I. G. Kuleev, I. I. Kuleev, and I. Yu. Arapova, J. Phys.: Condens. Matter 19, 406216 (2007).

    Article  Google Scholar 

  26. I. G. Kuleev and I. I. Kuleev, Fiz. Tverd. Tela (St. Petersburg) 47(2), 300 (2005) [Phys. Solid State 47 (2), 312 (2005)].

    Google Scholar 

  27. B. M. Mogilevskiĭ and A. F. Chudnovskiĭ, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  28. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elastic Moduli for Metals and Non-Metals (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  29. I. G. Kuleev and I. I. Kuleev, Zh. Éksp. Teor. Fiz. 120(3), 649 (2001) [JETP 93 (3), 568 (2002)]; Zh. Éksp. Teor. Fiz. 122 (3), 558 (2002) [JETP 95 (3), 480 (2002)].

    Google Scholar 

  30. I. G. Kuleev, I. I. Kuleev, A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Zh. Éksp. Teor. Fiz. 123(6), 1227 (2003) [JETP 96 (6), 1078 (2003)].

    Google Scholar 

  31. M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Phys. Rev. B: Condens. Matter 56(15), 9431 (1997).

    ADS  Google Scholar 

  32. A. P. Zhernov and A. V. Inyushkin, Usp. Fiz. Nauk 171(8), 827 (2001) [Phys.—Usp. 44 (8), 785 (2001)]; Usp. Fiz. Nauk 172 (5), 573 (2002) [Phys.—Usp. 45 (5), 527 (2002)].

    Article  Google Scholar 

  33. W. P. Mason and T. B. Bateman, J. Acoust. Soc. Am. 36, 644 (1964).

    Article  ADS  Google Scholar 

  34. H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators, Vol. 10: Springer Series in Solid-State Sciences (Springer, Berlin, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kuleyev.

Additional information

Original Russian Text © I.G. Kuleyev, I.I. Kuleyev, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1377–1391.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleyev, I.G., Kuleyev, I.I. Anisotropy of longitudinal ultrasonic absorption in anharmonic processes of scattering in Ge, Si, InSb, MgO, and KCl cubic crystals: The role of damping of phonon states. Phys. Solid State 52, 1475–1491 (2010). https://doi.org/10.1134/S1063783410070243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410070243

Keywords

Navigation