Skip to main content
Log in

Interrelation of the critical magnetic field H c2 and the residual resistivity for the two-band superconductor MgB2

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An expression that describes the upper critical magnetic field H c2 and generalizes the Gor’kov relation has been derived for the two-band two-gap superconductor MgB2. The expression relates the upper critical magnetic field H c2 to the residual resistivity and the parameters of the band structure and holds in the range from the clean limit to the dirty limit. The ratios of the relaxation times τπσ and the mean free paths of π- and σ-band electrons for MgB2 samples with a low defect level and Mg(B1 − x C x )2 samples with a partial substitution of carbon for boron are determined from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 37, 1407 (1959) [Sov. Phys. JETP 10, 998 (1959)].

    MathSciNet  Google Scholar 

  2. N. R. Werthamer, in Superconductivity, Ed. by R. D. Parks (Marcel Dekker, New York, 1969), Vol. 1, p. 321.

    Google Scholar 

  3. S. V. Shulga and S. L. Drechsler, J. Low Temp. Phys. 129, 93 (2002).

    Article  Google Scholar 

  4. L. P. Gor’kov and T. K. Melik-Barkhudarov, Zh. Éksp. Teor. Fiz. 45, 1493 (1963) [Sov. Phys. JETP 18, 1031 (1963)].

    Google Scholar 

  5. A. I. Golovashkin and N. P. Shabanova, Physica C (Amsterdam) 185–189, 2709 (1991).

    Google Scholar 

  6. N. P. Shabanova, S. I. Krasnosvobodtsev, V. S. Nozdrin, and A. I. Golovashkin, Fiz. Tverd. Tela (St. Petersburg) 38(7), 1969 (1996) [Phys. Solid State 38 (7), 1085 (1996)].

    Google Scholar 

  7. N. P. Shabanova, S. I. Krasnosvobodtsev, V. S. Nozdrin, E. V. Pechen, A. V. Varlashkin, S. V. Antonenko, G. I. Zhabrev, and A. I. Golovashkin, Czech. J. Phys. 46, 853 (1996).

    Article  ADS  Google Scholar 

  8. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimutsu, Nature (London) 410, 63 (2001).

    Article  ADS  Google Scholar 

  9. Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 64, 020501 (2001).

    Google Scholar 

  10. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Google Scholar 

  11. K. D. Belashchenko, M. Schilfgaarde, and V. P. Antropov, Phys. Rev. B: Condens. Matter 64, 092 503 (2001).

    Google Scholar 

  12. I. I. Mazin and V. P. Antropov, Physica C (Amsterdam) 385, 49 (2003).

    ADS  Google Scholar 

  13. F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, and S. Tajima, Phys. Rev. Lett. 89, 257 001 (2002).

    Article  Google Scholar 

  14. A. Gurevich, Phys. Rev. B: Condens. Matter 67, 184 515 (2003).

    MathSciNet  Google Scholar 

  15. A. A. Golubov and A. E. Koshelev, Phys. Rev. B: Condens. Matter 68, 104 503 (2003).

    Google Scholar 

  16. V. Ferrando, P. Manfrinetti, D. Marré, M. Putti, I. Sheikin, C. Tarantini, and C. Ferdeghini, Phys. Rev. B: Condens. Matter 68, 094517 (2003).

    Google Scholar 

  17. P. Miranovic, K. Machida, and V. G. Kogan, J. Phys. Soc. Jpn. 72, 221 (2003).

    Article  MATH  ADS  Google Scholar 

  18. M. R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S. M. Kazakov, J. Karpinski, and O. Fischer, Phys. Rev. Lett. 89, 187 003 (2002).

    Article  Google Scholar 

  19. N. P. Shabanova, A. I. Golovashkin, and A. V. Varlashkin, Kratk. Soobshch. Fiz., No. 1, 19 (2008).

  20. N. F. Masharov, Fiz. Tverd. Tela (Leningrad) 16(8), 2342 (1974) [Sov. Phys. Solid State 16 (8), 1524 (1974)].

    Google Scholar 

  21. P. B. Allen and W. E. Pickett, Phys. Rev. B: Condens. Matter 37, 7482 (1988).

    ADS  Google Scholar 

  22. A. Brinkman, A. A. Golubov, H. Rogalla, O. V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 65, 180517 (2002).

    Google Scholar 

  23. A. Carrington, P. J. Meeson, J. R. Cooper, L. Balicas, N. E. Hussey, E. A. Yelland, S. Lee, A. Yamamoto, S. Tajima, S. M. Kazakov, and J. Karpinski, Phys. Rev. Lett. 91, 037003 (2003).

    Google Scholar 

  24. R. Osborn, E. A. Goremychkin, A. I. Kolesnikov, and D. G. Hinks, Phys. Rev. Lett. 87, 017 005 (2001).

    Google Scholar 

  25. M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karpinski, A. Wisniewski, and H. W. Weber, Phys. Rev. B: Condens. Matter 66, 052505 (2002).

    Google Scholar 

  26. Y. Machida, S. Sasaki, H. Fujii, M. Furuyama, I. Kakeya, and K. Kadowaki, Phys. Rev. B: Condens. Matter 67, 094507 (2003).

    Google Scholar 

  27. L. Lyard, P. Samuely, P. Szabo, C. Marcenat, T. Klein, K. H. P. Kim, C. U. Jung, H. S. Lee, B. Kang, S. Choi, S. I. Lee, L. Paulius, J. Marcus, S. Blanchard, A. G. M. Jansen, U. Welp, G. Karapetrov, and W. K. Kwok, Supercond. Sci. Technol. 16, 193 (2003).

    Article  ADS  Google Scholar 

  28. A. V. Sologubenko, J. Jum, S. M. Kazakov, J. Karpinski, and H. R. Ott, Phys. Rev. B: Condens. Matter 65, 180505 (2002).

    Google Scholar 

  29. K. H. P. Kim, J. H. Choi, C. U. Jung, P. Chowdhury, H. S. Lee, M. S. Park, H. J. Kim, J. Y. Kim, Z. Du, E. M. Choi, M. S. Kim, W. N. Kang, S. I. Lee, G. Y. Sung, and J. Y. Lee, Phys. Rev. B: Condens. Matter 65, 100 510 (2002).

    Google Scholar 

  30. M. S. Park, H. S. Lee, J. D. Kim, M. H. Jung, Y. Jo, and S. I. Lee, J. Phys.: Condens. Matter 19, 242201 (2007).

    Google Scholar 

  31. A. K. Pradhan, Z. X. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito, and H. Ihara, Phys. Rev. B: Condens. Matter 64, 212509 (2001).

    Google Scholar 

  32. Yu. Eltsev, K. Nakao, S. Kee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Phys. Rev. B: Condens. Matter 66, 180504(R) (2002).

  33. Yu. Eltsev, Physica C (Amsterdam) 385, 162 (2003).

    ADS  Google Scholar 

  34. T. Masui, S. Lee, and S. Tajima, Phys. Rev. B: Condens. Matter 70, 024504 (2004).

    Google Scholar 

  35. S. Y. Xu, Qi Li, E. Wertz, Y. F. Hu, A. V. Pogrebnyakov, X. H. Zeng, X. X. Xi, and J. M. Redwing, Phys. Rev. B: Condens. Matter 68, 224501 (2003).

    Google Scholar 

  36. R. Gandikota, R. K. Singh, J. Kim, B. Wilkens, N. Newman, J. M. Rowell, A. V. Pogrebnyakov, X. X. Xi, J. M. Redwing, S. Y. Xu, Q. Li, and B. N. Moeckly, Appl. Phys. Lett. 87, 072507 (2005).

    Google Scholar 

  37. S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, and S. Tajima, Physica C (Amsterdam) 397, 7 (2003).

    ADS  Google Scholar 

  38. N. I. Medvedeva, A. L. Ivanovskii, J. E. Medvedeva, and A. J. Freeman, Phys. Rev. B: Condens. Matter 64, 020 502 (2004).

    Google Scholar 

  39. D. Kasinathan, K. W. Lee, and W. E. Pickett, Physica C (Amsterdam) 424, 116 (2005).

    ADS  Google Scholar 

  40. R. A. Ribeiro, S. L. Bud’ko, C. Petrovic, and P. C. Canfield, Physica C (Amsterdam) 384, 227 (2003).

    ADS  Google Scholar 

  41. I. M. Lifshitz, Zh. Éksp. Teor. Fiz. 38, 1569 (1960) [Sov. Phys. JETP 11, 1130 (1960)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Shabanova.

Additional information

Original Russian Text © N.P. Shabanova, A.I. Golovashkin, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 4, pp. 637–642.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabanova, N.P., Golovashkin, A.I. Interrelation of the critical magnetic field H c2 and the residual resistivity for the two-band superconductor MgB2 . Phys. Solid State 51, 670–677 (2009). https://doi.org/10.1134/S1063783409040039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409040039

PACS numbers

Navigation