Skip to main content
Log in

Boundary Effect and Critical Temperature of Two-Band Superconducting Films: Application to MgB\(_2\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Based on the two-band Bogoliubov–de Gennes theory, we study the boundary effect of an interface between a two-gap superconductor and an insulator (or vacuum). New boundary terms are introduced into the two-band Ginzburg–Landau free energy, which modifies the boundary conditions for the corresponding order parameters of the superconductor. A microscopic analysis of these terms is also given and the characteristic length scale of the boundary effect can be estimated. The theory allows for a simple calculation of the critical temperature suppression with the decrease in film thickness for the typical two-band superconductor magnesium diboride. Our numerical results are in good agreement with the experimental data observed in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001). https://doi.org/10.1038/35065039

    Article  ADS  Google Scholar 

  2. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Phys. Rev. Lett. 86, 4656 (2001). https://doi.org/10.1103/PhysRevLett.86.4656

    Article  ADS  Google Scholar 

  3. J.M. An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001). https://doi.org/10.1103/PhysRevLett.86.4366

    Article  ADS  Google Scholar 

  4. Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, Phys. Rev. B 64, 020501(R) (2001). https://doi.org/10.1103/PhysRevB.64.020501

    Article  ADS  Google Scholar 

  5. K.P. Bohnen, R. Heid, B. Renker, Phys. Rev. Lett. 86, 5771 (2001). https://doi.org/10.1103/PhysRevLett.86.5771

    Article  ADS  Google Scholar 

  6. A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001). https://doi.org/10.1103/PhysRevLett.87.087005

    Article  ADS  Google Scholar 

  7. A. Brinkman, A.A. Golubov, H. Rogalla, O.V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, O.K. Andersen, Phys. Rev. B 65, 180517(R) (2002). https://doi.org/10.1103/PhysRevB.65.180517

    Article  ADS  Google Scholar 

  8. F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, P. Monod, Phys. Rev. Lett. 87, 177008 (2001). https://doi.org/10.1103/PhysRevLett.87.177008

    Article  ADS  Google Scholar 

  9. P. Szabó, P. Samuely, J. Kačmarčík, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, A.G.M. Jansen, Phys. Rev. Lett. 87, 137005 (2001). https://doi.org/10.1103/PhysRevLett.87.137005

    Article  ADS  Google Scholar 

  10. F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, J.D. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001). https://doi.org/10.1103/PhysRevLett.87.047001

    Article  ADS  Google Scholar 

  11. I.I. Mazin, J. Kortus, Phys. Rev. B 65, 180510(R) (2002). https://doi.org/10.1103/PhysRevB.65.180510

    Article  ADS  Google Scholar 

  12. Y. Bugoslavsky, Y. Miyoshi, G.K. Perkins, A.V. Berenov, Z. Lockman, J.L. MacManus-Driscoll, L.F. Cohen, A.D. Caplin, H.Y. Zhai, M.P. Paranthaman, H.M. Christen, M. Blamire, Supercond. Sci. Technol. 15, 526 (2002). https://doi.org/10.1088/0953-2048/15/4/308

    Article  ADS  Google Scholar 

  13. X.X. Xi, A.V. Pogrebnyakov, X.H. Zeng, J.M. Redwing, S.Y. Xu, Q. Li, Z.K. Liu, J. Lettieri, V. Vaithyanathan, D.G. Schlom, H.M. Christen, H.Y. Zhai, A. Goyal, Supercond. Sci. Technol. 17, S196 (2004). https://doi.org/10.1088/0953-2048/17/5/021

    Article  Google Scholar 

  14. X.H. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi, E.M. Lysczek, J.M. Redwing, S.Y. Xu, Q. Li, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, Z.K. Liu, Nat. Mater. 1, 35 (2002). https://doi.org/10.1038/nmat703

    Article  ADS  Google Scholar 

  15. X.X. Xi, X.H. Zeng, A.V. Pogrebnyakov, S.Y. Xu, Q. Li, Y. Zhong, C.O. Brubaker, Z.K. Liu, E.M. Lysczek, J.M. Redwing, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, IEEE Trans. Appl. Supercond. 13, 3233 (2003). https://doi.org/10.1109/TASC.2003.812209

    Article  ADS  Google Scholar 

  16. Y.L. Chen, C. Yang, C.Y. Jia, Q.R. Feng, Z.Z. Gan, Physica C 525–526, 56 (2016). https://doi.org/10.1016/j.physc.2016.02.022

    Article  ADS  Google Scholar 

  17. C. Zhang, Y. Wang, D. Wang, Y. Zhang, Z.H. Liu, Q.R. Feng, Z.Z. Gan, J. Appl. Phys. 114, 023903 (2013). https://doi.org/10.1063/1.4812738

    Article  ADS  Google Scholar 

  18. J.Y. Pan, C. Zhang, F. He, Q.R. Feng, Acta Phys. Sin. 62, 127401 (2013). https://doi.org/10.7498/aps.62.127401

    Article  Google Scholar 

  19. M.P.A. Fisher, G. Grinstein, S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990). https://doi.org/10.1103/PhysRevLett.64.587

    Article  ADS  Google Scholar 

  20. A.M. Finkel’stein, Phys. B 197, 636 (1994). https://doi.org/10.1016/0921-4526(94)90267-4

    Article  ADS  Google Scholar 

  21. M.E. Zhitomirsky, V.H. Dao, Phys. Rev. B 69, 054508 (2004). https://doi.org/10.1103/PhysRevB.69.054508

    Article  ADS  Google Scholar 

  22. L.F. Zhang, L. Covaci, M.V. Milošević, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. Lett. 109, 107001 (2012). https://doi.org/10.1103/PhysRevLett.109.107001

    Article  ADS  Google Scholar 

  23. L.F. Zhang, L. Covaci, M.V. Milošević, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. B 88, 144501 (2013). https://doi.org/10.1103/PhysRevB.88.144501

    Article  ADS  Google Scholar 

  24. L.F. Zhang, V.F. Becerra, L. Covaci, M.V. Milošević, Phys. Rev. B 94, 024520 (2016). https://doi.org/10.1103/PhysRevB.94.024520

    Article  ADS  Google Scholar 

  25. L.F. Zhang, L. Covaci, M.V. Milošević, Phys. Rev. B 96, 224512 (2017). https://doi.org/10.1103/PhysRevB.96.224512

    Article  ADS  Google Scholar 

  26. P.G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, New York, 1966). https://doi.org/10.1201/9780429497032

    Book  MATH  Google Scholar 

  27. W.C. Gonçalves, E. Sardella, V.F. Becerra, M.V. Milošević, F.M. Peeters, J. Math. Phys. 55, 041501 (2014). https://doi.org/10.1063/1.4870874

    Article  ADS  MathSciNet  Google Scholar 

  28. V.F. Becerra, M.V. Milošević, Phys. Rev. B 94, 184517 (2016). https://doi.org/10.1103/PhysRevB.94.184517

    Article  ADS  Google Scholar 

  29. V.F. Becerra, M.V. Milošević, Physica C 533, 91 (2017). https://doi.org/10.1016/j.physc.2016.07.002

    Article  ADS  Google Scholar 

  30. A. Benfenati, A. Samoilenka, E. Babaev, Phys. Rev. B 103, 144512 (2021). https://doi.org/10.1103/PhysRevB.103.144512

    Article  ADS  Google Scholar 

  31. T.N. Jorge, C. Aguirre, A. de Arruda, J. Barba-Ortega, Eur. Phys. J. B 93, 69 (2020). https://doi.org/10.1140/epjb/e2020-100418-4

    Article  ADS  Google Scholar 

  32. C.A. Aguirre, Q.D. Martins, J. Barba-Ortega, Physica C 581, 1353818 (2021). https://doi.org/10.1016/j.physc.2021.1353818

    Article  ADS  Google Scholar 

  33. C. Aguirre, A.S. de Arruda, J. Faúndez, J. Barba-Ortega, Phys. B 615, 413032 (2021). https://doi.org/10.1016/j.physb.2021.413032

    Article  Google Scholar 

  34. J.B. Ketterson, S.N. Song, Superconductivity (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781139171090.011

    Book  Google Scholar 

  35. X.X. Xi, Rep. Prog. Phys. 71, 116501 (2008). https://doi.org/10.1088/0034-4885/71/11/116501

    Article  ADS  Google Scholar 

  36. S.L. Bud’ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield, Phys. Rev. Lett. 86, 1877 (2001). https://doi.org/10.1103/PhysRevLett.86.1877

    Article  ADS  Google Scholar 

  37. K.C. Zhang, L.L. Ding, C.G. Zhuang, L.P. Chen, C.P. Chen, Q.R. Feng, Phys. Status Solidi 203, 2463 (2006). https://doi.org/10.1002/PSSA.200522262

    Article  ADS  Google Scholar 

  38. X.J. Wang, C. Zhang, Y. Zhang, Q.R. Feng, Y. Wang, Chin. J. Low Temp. Phys. 38, 64 (2016). https://doi.org/10.13380/j.cnki.chin.j.lowtemp.phys.2016.04.012

    Article  Google Scholar 

  39. S. Szczeniowski, L. Wojtczak, Acta Phys. Pol. 36, 241 (1969)

    Google Scholar 

  40. P. Czoschke, H. Hong, L. Basile, T.C. Chiang, Phys. Rev. Lett. 91, 226801 (2003). https://doi.org/10.1103/PhysRevLett.91.226801

    Article  ADS  Google Scholar 

  41. P. Czoschke, H. Hong, L. Basile, T.C. Chiang, Phys. Rev. B 72, 035305 (2005). https://doi.org/10.1103/PhysRevB.72.035305

    Article  ADS  Google Scholar 

  42. P. Czoschke, H. Hong, L. Basile, T.C. Chiang, Phys. Rev. B 72, 075402 (2005). https://doi.org/10.1103/PhysRevB.72.075402

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Che, JT., Ye, CX. et al. Boundary Effect and Critical Temperature of Two-Band Superconducting Films: Application to MgB\(_2\). J Low Temp Phys 212, 113–126 (2023). https://doi.org/10.1007/s10909-023-02981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02981-3

Keywords

Navigation