Skip to main content
Log in

Fatigue of lead titanate and lead zirconate titanate thin films

  • Magnetism and ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The fatigue of lead titanate and lead zirconate titanate ferroelectric thin films, i.e., a change in the polarization as a function of the number of switching cycles in an external electric field, is investigated experimentally. The threshold numbers of switching cycles are determined to be 1010–1011 for the lead titanate films and 109–1010 for the lead zirconate titanate films. It is shown that a change in the temperature does not substantially affect the threshold number of switching cycles at which the switched polarization decreases drastically. However, an increase in the external field strength leads to a noticeable decrease in the threshold number of switching cycles. The process of fatigue is accompanied by an increase in the coercive field and the internal bias field. It is established that, as the number of switching cycles increases, the internal bias field changes more significantly as compared to the coercive field. The absence of a change in the phase composition in repeatedly switched samples indicates that the fatigue processes have a nonchemical nature. The anomaly observed in the frequency dependence of the permittivity in the frequency range 106–107 Hz due to the domain structure disappears after multiple switching cycles. This suggests that the observed fatigue phenomenon has a domain nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Sheppard, Ceram. Bull. 71, 85 (1992).

    Google Scholar 

  2. T. Mihara, H. Watanabe, and C. A. Paz de Araujo, Jpn. J. Appl. Phys. 33, 3996 (1994).

    Article  ADS  Google Scholar 

  3. P. K. Larsen, G. J. M. Dormans, D. J. Taylor, and P. J. van Veldhoven, J. Appl. Phys. 76, 2405 (1994).

    Article  ADS  Google Scholar 

  4. O. Auciello, K. D. Gifford, D. J. Lichtenwalner, R. Dat, H. N. Al-Shareef, K. R. Bellur, and A. I. Kincon, Integr. Ferroelectr. 6, 173 (1995).

    Article  Google Scholar 

  5. Yi. Wang, K. H. Wong, and W. U. Wen-Bin, Chin. Phys. Lett. 19, 566 (2002).

    Article  ADS  Google Scholar 

  6. A. S. Sidorkin, in Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics, University Park, PA, United States, 1994 (University Park, 1994), p. 91.

  7. M. Dawber and J. F. Scott, Appl. Phys. Lett. 76, 1060(2000).

    Article  ADS  Google Scholar 

  8. I. K. Yoo and S. B. Desu, Phys. Status Solidi A 133, 565(1992).

    Article  Google Scholar 

  9. C. Brennan, Ferroelectrics 150, 199 (1993).

    Google Scholar 

  10. U. Robels, J. H. Calderwood, and G. Arlt, J. Appl. Phys. 77, 4002 (1995).

    Article  ADS  Google Scholar 

  11. E. Paron, M. Brazier, S. Mansour, and A. Bement, Integr. Ferroelectr. 18, 29 (1997).

    Article  Google Scholar 

  12. A. K. Tagantsev, M. Landivar, E. Colla, and N. Setter, J. Appl. Phys. 78, 2623 (1995).

    Article  ADS  Google Scholar 

  13. A. K. Tagantsev and I. A. Stolichnov, Appl. Phys. Lett. 74, 1326 (1999).

    Article  ADS  Google Scholar 

  14. A. K. Tagantsev, I. A. Stolichnov, E. L. Colla, and N. Setter, J. Appl. Phys. 90, 1387 (2001).

    Article  ADS  Google Scholar 

  15. V. V. Lemanov and V. K. Yarmarkin, Fiz. Tverd. Tela (St. Petersburg) 38(8), 2482 (1996) [Phys. Solid State 38 (8), 1363 (1996)].

    Google Scholar 

  16. Y. Zhang and Q. Jiang, J. Am. Ceram. Soc. 78, 3290(1995).

    Article  Google Scholar 

  17. Sang-Joo Kim and Qing Jiang, Smart Mater. Struct. 5,321 (1996).

    Article  ADS  Google Scholar 

  18. A. S. Sidorkin, L. P. Nesterenko, I. A. Bocharova, V. A. Sidorkin, and G. L. Smirnov, Ferroelectrics 286,335 (2003).

    Article  Google Scholar 

  19. A. S. Sidorkin, L. P. Nesterenko, I. A. Bocharova, G. L. Smirnov, and S. V. Ryabtsev, Izv. Akad. Nauk, Ser. Fiz. 68, 994 (2004).

    Google Scholar 

  20. A. S. Sidorkin, A. M. Solodukha, L. P. Nesterenko, S. V. Ryabtsev, I. A. Bocharova, and G. L. Smirnov, Fiz. Tverd. Tela (St. Petersburg) 46(10), 1841 (2004) [Phys. Solid State 46 (10), 1906 (2004)].

    Google Scholar 

  21. A. S. Sidorkin, L. P. Nesterenko, G. L. Smirnov, A. L. Smirnov, and S. V. Ryabtsev, Fiz. Tverd. Tela (St. Petersburg) 48(6), 1118 (2006) [Phys. Solid State 48 (6), 1189 (2006)].

    Google Scholar 

  22. A. S. Sidorkin, J. Appl. Phys. 83, 3762 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sidorkin.

Additional information

Original Russian Text © A.S. Sidorkin, L.P. Nesterenko, A.L. Smirnov, G.L. Smirnov, S.V. Ryabtsev, A.A. Sidorkin, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 11, pp. 2066–2072.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorkin, A.S., Nesterenko, L.P., Smirnov, A.L. et al. Fatigue of lead titanate and lead zirconate titanate thin films. Phys. Solid State 50, 2157–2163 (2008). https://doi.org/10.1134/S1063783408110255

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408110255

PACS numbers

Navigation