Skip to main content
Log in

Influence of cobalt on the structural and magnetic Inhomogeneities, phase transitions, and magnetoresistive properties of La0.6Sr0.2Mn1.2 − x Co x O3 ± δ

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure and properties of magnetoresistive ceramics La0.6Sr0.2Mn1.2 − x Co x O3 ± δ (x = 0−0.3) sintered at a temperature of 1200°C are investigated using x-ray diffraction, resistance, and magnetic (χ ac , M, 55Mn NMR) measurements. It is shown that the samples contain the rhombohedral (R \( \bar 3 \) c) perovskite (90%) and tetragonal (I41/amd) hausmannite (10%) phases. The lattice parameters of these phases decrease with an increase in the cobalt content x. The real perovskite structure involves point defects (anion and cation vacancies) and nanostructured defects of the cluster type. An analysis of the asymmetrically broadened 55Mn NMR spectra confirms the high-frequency electron-hole exchange between Mn3+ and Mn4+ ions and a local inhomogeneity of their environment by other ions and defects of the point and cluster types. An increase in the Co content leads to an increase in the electrical resistivity, an enhancement of the magnetoresistance (MR) effect, and a decrease in the magnetic susceptibility and the temperatures of the metal-semiconductor (T ms ) and ferromagnetic-paramagnetic (T C) phase transitions due to the suppression of the exchange interaction between Mn3+ and Mn4+ ions by vacancies and clusters. The introduction of cobalt results in a decrease in the ferromagnetic component and the activation energy. The magnetoresistance effect in the vicinity of the phase transition temperatures T ms and T C is associated with the scattering of charge carriers from intracrystallite inhomogeneities of the lattice, and the low-temperature magnetoresistance effect is governed by the tunneling at the intercrystalline boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Coey, M. Viret, and S. Molnaz, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  2. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  3. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  4. E. Dagotto, J. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  5. Young Sukcho, Jion Scok Hwang-Bo, and Yeon Hee Kinetal, J. Magn. Magn. Mater. 226–230, 754 (2001).

    Google Scholar 

  6. S. Valencia, Li. Balcells, B. Martinez, and J. Fontcuberta, J. Appl. Phys. 93, 8059 (2003).

    Article  ADS  Google Scholar 

  7. V. P. Pashchenko, N. I. Nosanov, and A. A. Shemyakov, Patent UA No. 45 153, Byul. No. 9 (2005).

  8. O. Toulemonde, F. Stuter, A. Barnabe, A. Maignan, C. Martin, and B. Ravean, Eur. Phys. J. B 4, 159 (1998).

    Article  ADS  Google Scholar 

  9. R. Mahendiran, A. Maignan, S. Hebert, C. Martin, M. Hervien, B. Ravean, and J. F. Mitchell, and P. Schiffer, Phys. Rev. Lett. 89, 286602 (2002).

    Google Scholar 

  10. P. Mandal and B. Ghosh, Phys. Rev. B: Condens. Matter 68, 014422 (2003).

    Google Scholar 

  11. J.-S. Zhou and J. B. Goodenaugh, Phys. Rev. Lett. 62, 3834 (2000).

    ADS  Google Scholar 

  12. G. Bach and W. M. Temmerman, Phys. Rev. B: Condens. Matter 69, 054427 (2004).

    Google Scholar 

  13. G. Papavassilion, M. Pissas, G. Diamantopoulos, M. Belesi, M. Fardis, D. Stamopoulos, A. G. Kontos, M. Hennion, and J. Dolinsos, Phys. Rev. Lett. 96, 097201 (2006).

    Google Scholar 

  14. V. S. Abramov, V. P. Pashchenko, S. I. Khartsev, and O. P. Cherenkov, Funct. Mater. 6, 64 (1999).

    Google Scholar 

  15. V. P. Dyakonov, V. P. Pashchenko, E. Zubov, and V. Mikhaylov, J. Magn. Magn. Mater. 246, 40 (2002).

    Article  ADS  Google Scholar 

  16. É. E. Zubov, V. P. Dyakonov, and H. Szymczak, Zh. Éksp. Teor. Fiz. 122(6), 1212 (2002) [JETP 95 (6), 1044 (2002)].

    Google Scholar 

  17. V. P. Paschenko, A. A. Shemyakov, A. V. Pashechenko, L. T. Tsymbal, G. Kakazei, V. P. Dyakonov, H. Szymczak, J. A. M. Santos, and J. B. Sousa, Fiz. Nizk. Temp. (Kharkov) 30(4), 403 (2004) [Low Temp. Phys. 30 (4), 299 (2004)].

    Google Scholar 

  18. G. J. Chen, Y. H. Chang, and H. W. Hsu, J. Magn. Magn. Mater. 219, 317 (2000).

    Article  ADS  Google Scholar 

  19. G. Dezanneau, A. Sin, H. Roussel, H. Vincent, and M. Audier, Solid State Commun. 121, 133 (2002).

    Article  ADS  Google Scholar 

  20. L. Morales, R. Allub, B. Alascio, A. Butera, and A. Caneiro, Phys. Rev. B: Condens. Matter 72, 132413 (2005).

    Google Scholar 

  21. M. S. Sahasrabudhe, S. I. Patil, S. K. Dute, K. P. Adhi, S. D. Kulkarni, P. A. Joy, and R. N. Bathe, Solid State Commun. 137, 595 (2006).

    Article  ADS  Google Scholar 

  22. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  Google Scholar 

  23. W. Bazela, V. Dyakonov, V. P. Pashchenko, H. Szymczak, J. H. Hernandez Velasko, and A. Stytula, Phys. Status Solidi B 236, 458 (2003).

    Article  ADS  Google Scholar 

  24. V. P. Pashchenko, S. I. Khartsev, O. P. Cherenkov, A. A. Shemyakov, Z. A. Samoilenko, A. D. Loiko, and V. I. Kamenev, Neorg. Mater. 35(12), 1509 (1999) [Inorg. Mater. 35 (12), 1294 (1999)].

    Google Scholar 

  25. M. F. Hundley and J. J. Neumeier, Phys. Rev. B: Condens. Matter 55, 11511 (1997).

    Google Scholar 

  26. M. P. de Jong, I. Bergenti, W. Osikowicz, R. Friedlein, V. A. Dediu, C. Taliani, and W. R. Salaneek, Phys. Rev. B: Condens. Matter 73, 052403 (2006).

    Google Scholar 

  27. R. I. Dass and J. B. Goodenough, Phys. Rev. B: Condens. Matter 67, 014401 (2002).

    Google Scholar 

  28. P. Laiho, K. G. Lisunov, E. Lahderanta, P. A. Petrenko, J. Salminea, V. N. Stamov, Yu. P. Stepanov, and V. S. Zachvalinskii, J. Phys. Chem. Solids 64, 2313 (2003).

    Article  ADS  Google Scholar 

  29. V. P. Pashchenko, A. A. Shemyakov, V. K. Prokopenko, V. N. Derkachenko, V. P. Dyakonov, and H. Szymczak, J. Magn. Magn. Mater. 220, 52 (2000).

    Article  ADS  Google Scholar 

  30. V. P. Pashchenko, A. A. Shemyakov, A. V. Pashchenko, V. K. Prokopenko, Yu. F. Revenko, V. A. Turchenko, V. N. Varyukhin, V. P. D’yakonov, and H. Szymczak, Fiz. Nizk. Temp. (Kharkov) 33(8), 870 (2007) [Low Temp. Phys. 33 (8), 663 (2007)].

    Google Scholar 

  31. M. M. Savosta, V. A. Borodin, and P. Novak, Phys. Rev. B: Condens. Matter 59, 8778 (1999).

    ADS  Google Scholar 

  32. G. Papavassilion, M. Fardis, M. Belesi, T. G. Maris, G. Kallias, M. Pissas, D. Diarchos, C. Dimitropoulos, and J. Dolinsek, Phys. Rev. Lett. 84, 761 (2000).

    Article  ADS  Google Scholar 

  33. M. M. Savosta and P. Novak, Phys. Rev. Lett. 87, 137204 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pashchenko.

Additional information

Original Russian Text © A.V. Pashchenko, V.P. Pashchenko, A.A. Shemyakov, N.G. Kisel’, V.K. Prokopenko, Yu.F. Revenko, A.G. Sil’cheva, V.P. Dyakonov, H. Szymczak, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 7, pp. 1257–1262.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashchenko, A.V., Pashchenko, V.P., Shemyakov, A.A. et al. Influence of cobalt on the structural and magnetic Inhomogeneities, phase transitions, and magnetoresistive properties of La0.6Sr0.2Mn1.2 − x Co x O3 ± δ . Phys. Solid State 50, 1308–1314 (2008). https://doi.org/10.1134/S1063783408070184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408070184

PACS numbers

Navigation