Skip to main content
Log in

Grain growth and collective migration of grain boundaries during plastic deformation of nanocrystalline materials

  • Defects and Impurity Centers, Dislocations, and Physics Of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model is proposed for the collective migration of two neighboring grain boundaries (GBs) in a nanocrystalline material under applied elastic stress. By analyzing the change in the energy of the system, it is shown that GBs can remain immobile or migrate toward each other depending on the values of the applied shear stress and misorientation angles. The process of GB migration can proceed either in a stable regime, wherein the GBs occupy equilibrium positions corresponding to a minimum of the energy of the system under relatively small applied stress, or in an unstable regime, wherein the motion of GBs under relatively high stress is accompanied by a continuous decrease in the system energy and becomes uncontrollable. The stable migration of GBs leads to a decrease of the grain bounded by them at the cost of growth of the neighbor grains and can result in complete or partial annihilation of the GBs and the collapse of this grain. Unstable migration leads either to annihilation of GBs or to passage of them through each other, which can be considered as the disappearance of the grain and nucleation and growth of a new grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mukherjee, Mater. Sci. Eng., A 322, 1 (2002).

    Article  Google Scholar 

  2. K. S. Kumar, H. van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  3. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, Vol. 1: Nanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  4. S. C. Tjong and H. Chen, Mater. Sci. Eng., R 45, 1 (2004).

    Article  Google Scholar 

  5. V. A. Pozdnyakov and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 47(5), 793 (2005) [Phys. Solid State 47 (5), 817 (2005)].

    Google Scholar 

  6. D. Wolf, V. Yamakov, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Acta Mater. 53, 1 (2005).

    Article  Google Scholar 

  7. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  8. M. Dao, L. Lu, R. J. Asaro, J. T. M. de Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  9. C. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  10. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 49(6), 961 (2007) [Phys. Solid State 49 (6), 1013 (2007)].

    Google Scholar 

  11. F. A. Mohamed, Metall. Mater. Trans. A 38, 340 (2007).

    Article  Google Scholar 

  12. A. V. Sergeeva, N. A. Mara, and A. K. Mukherjee, J. Mater. Sci. 42, 1433 (2007).

    Article  Google Scholar 

  13. M. Jin, A. M. Minor, E. A. Stach, and J. W. Morris, Jr., Acta Mater. 52, 5381 (2004).

    Article  Google Scholar 

  14. W. A. Soer, J. Th. M. de Hosson, A. M. Minor, J. W. Morris, Jr., and E. A. Stach, Acta Mater. 52, 5783 (2004).

    Article  Google Scholar 

  15. M. Jin, A. M. Minor, and J. W. Morris, Jr., Thin Solid Films 515, 3202 (2007).

    Article  ADS  Google Scholar 

  16. K. Zhang, J. R. Weertman, and J. A. Eastman, Appl. Phys. Lett. 85, 5197 (2004).

    Article  ADS  Google Scholar 

  17. K. Zhang, J. R. Weertman, and J. A. Eastman, Appl. Phys. Lett. 87, 061 921 (2005).

    Google Scholar 

  18. P. L. Gai, K. Zhang, and J. Weertman, Scr. Mater. 56, 25 (2007).

    Article  Google Scholar 

  19. X. Z. Liao, A. R. Kilmametov, R. Z. Valiev, H. Gao, X. Li, A. K. Mukherjee, J. F. Bingert, and Y. T. Zhu, Appl. Phys. Lett. 88, 021 909 (2006).

    Google Scholar 

  20. D. Pan, T. G. Nieh, and M. W. Chen, Appl. Phys. Lett. 88, 161 922 (2006).

    Google Scholar 

  21. D. Pan, S. Kuwano, T. Fujita, and M. W. Chen, Nano Lett. 7, 2108 (2007).

    Article  Google Scholar 

  22. D. S. Gianola, S. van Petegem, M. Legros, S. Brandstetter, H. van Swygenhoven, and K. J. Hemker. Acta Mater. 54, 2253 (2006).

    Article  Google Scholar 

  23. D. S. Gianola, D. H. Warner, J. F. Molinari, and K. J. Hemker, Scr. Mater. 55, 649 (2006).

    Article  Google Scholar 

  24. G. J. Fan, L. F. Fu, D. C. Qiao, H. Choo, P. K. Liaw, and N. D. Browning, Scr. Mater. 54, 2137 (2006).

    Article  Google Scholar 

  25. G. J. Fan, L. F. Fu, H. Choo, P. K. Liaw, and N. D. Browning, Acta Mater. 54, 4781 (2006).

    Article  Google Scholar 

  26. G. J. Fan, Y. D. Wang, L. F. Fu, H. Choo, P. K. Liaw, Y. Ren, and N. D. Browning, Appl. Phys. Lett. 88, 171914 (2006).

    Google Scholar 

  27. G. J. Fan, L. F. Fu, Y. D. Wang, Y. Ren, H. Choo, P. K. Liaw, G. Y. Wang, and N. D. Browning, Appl. Phys. Lett. 89, 101 918 (2006).

    Google Scholar 

  28. B. Günther, A. Kumpmann, and H.-D. Kunze, Scr. Metall. Mater. 27, 833 (1992).

    Article  Google Scholar 

  29. A. Kumpmann, B. Günther, and H.-D. Kunze, Mater. Sci. Eng., A 168, 165 (1993).

    Article  Google Scholar 

  30. V. Y. Gertsman and R. Birringer, Scr. Metall. Mater. 30, 577 (1994).

    Article  Google Scholar 

  31. J. A. Haber and W. E. Buhro, J. Am. Chem. Soc. 120, 10847 (1998).

    Article  Google Scholar 

  32. R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov, and B. Baudelet, Acta Metall. Mater. 42, 2467 (1994).

    Article  Google Scholar 

  33. X. Xu, T. Nishimura, N. Hirosaki, R.-J. Xie, Y. Yamamoto, and H. Tanaka, Acta Mater. 54, 255 (2006).

    Article  Google Scholar 

  34. A. Hasnaoui, H. van Swygenhoven, and P. M. Derlet, Acta Mater. 50, 3927 (2002).

    Article  Google Scholar 

  35. J. Schiotz, Mater. Sci. Eng., A 375–377, 975 (2004).

    Google Scholar 

  36. D. Farkas, A. Frøseth, and H. van Swygenhoven, Scr. Mater. 55, 695 (2006).

    Article  Google Scholar 

  37. J. Monk and D. Farkas, Phys. Rev. B: Condens. Matter 75, 045 414 (2007).

    Google Scholar 

  38. F. Sansoz and V. Dupont, Appl. Phys. Lett. 89, 111901 (2006).

    Google Scholar 

  39. F. Sansoz and J. F. Molinari, Thin Solid Films 515, 3158 (2007).

    Article  ADS  Google Scholar 

  40. T. Shimokawa, A. Nakatani, and H. Kitagawa, Phys. Rev. B: Condens. Matter 71, 224 110 (2005).

    Google Scholar 

  41. A. J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 51, 2097 (2003).

    Article  Google Scholar 

  42. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 52, 3793 (2004).

    Article  Google Scholar 

  43. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1986 (2004) [Phys. Solid State 46 (11), 2053 (2004)].

    Google Scholar 

  44. J. C. M. Li, Phys. Rev. Lett. 96, 215 506 (2006).

    Google Scholar 

  45. M. Yu. Gutkin and I. A. Ovid’ko, Appl. Phys. Lett. 87, 251 916 (2005).

  46. J. W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).

    Article  Google Scholar 

  47. L. Zhou, N. Zhou, and G. Song, Philos. Mag. 86, 5885 (2006).

    Article  ADS  Google Scholar 

  48. H. Zhang, D. J. Srolovitz, J. F. Douglas, and J. A. Warren, Acta Mater. 53, 4527 (2007).

    Article  Google Scholar 

  49. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1975 (2004) [Phys. Solid State 46 (11), 2042 (2004)].

    Google Scholar 

  50. V. V. Rybin, Severe Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  51. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  52. M. Yu. Gutkin, K. N. Mikaelyan, A. E. Romanov, and P. Klimanek, Phys. Status Solidi A 193, 35 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Gutkin.

Additional information

Original Russian Text © M.Yu. Gutkin, K.N. Mikaelyan, I.A. Ovid’ko, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 7, pp. 1216–1229.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, M.Y., Mikaelyan, K.N. & Ovid’ko, I.A. Grain growth and collective migration of grain boundaries during plastic deformation of nanocrystalline materials. Phys. Solid State 50, 1266–1279 (2008). https://doi.org/10.1134/S1063783408070135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408070135

PACS numbers

Navigation