Skip to main content
Log in

Structural Transformations in the Grain Boundary Region of Nanocrystalline Metals Under Mechanical Loading

  • Published:
Russian Physics Journal Aims and scope

Molecular dynamics analysis of special features of structural transformations at the grain boundaries (GBs) of nanocrystalline metals with face-centered cubic (FCC) and body-centered cubic (BCC) lattices under shear loads is performed. The objects of the study are nickel and vanadium samples containing symmetric tilt GBs. Shear loading is specified by the displacement of the surface atomic layers parallel to the GB plane at a constant speed. Shear load causes a high-speed GB movement along the normal to the boundary plane. To initiate the GB movement, high stress is required. Periodic boundary conditions prevent the occurrence of the grain rotations. The GB velocity is determined by the shear rate and depends on the grain misorientation angle. It has been found that the GB movement has a jump-like nature and is accompanied by a rapid drop in the internal stresses. Self-consistent structural transformations of atomic planes, through which the high-speed GB movement in a metal occurs, are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kraft, P. A. Gruber, R. Mönig, et al., Annu. Rev. Mater. Res., 40, No. 1, 293–317 (2010).

    Article  ADS  Google Scholar 

  2. J. R. Greer and J. T. M. De Hosson, Prog. Mater. Sci., 56, No. 6, 654–724 (2011).

    Article  Google Scholar 

  3. D. Wolf, V. Yamakov, S. Phillpot, et al., Acta Mater., 53, Nos. 1–3, 1–40 (2005).

  4. M. Dao, L. Lu, R. Asaro, et al., Acta Mater., 55, No. 12, 4041–4065 (2007).

    Article  Google Scholar 

  5. I. Ovid’ko, R. Valiev, and Y. Zhu, Prog. Mater Sci., 94, 462–540 (2018).

    Article  Google Scholar 

  6. E. N. Hahn and M. A. Meyers, Mater. Sci. Eng., A646, 101–134 (2015).

    Article  Google Scholar 

  7. A. V. Korchuganov, K. P. Zolnikov, and D. S. Kryzhevich, Mater. Lett., 252, 194–197 (2019).

    Article  Google Scholar 

  8. S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Sci. Rep., 9, 3867 (2019).

    Article  ADS  Google Scholar 

  9. K. P. Zolnikov, A. V. Korchuganov, D. S. Kryzhevich, et al., Phys. Mesomech., 21, 492–497 (2018).

    Article  Google Scholar 

  10. I. Y. Smolin, P. V. Makarov, M. O. Eremin, et al., Procedia Struct. Integr., 2, 3353–3360 (2016).

    Article  Google Scholar 

  11. A. A. Tsukanov, E. V. Shilko, E. Gutmanas, et al., Phys. Mesomech., 21, 538–545 (2018).

    Article  Google Scholar 

  12. N. V. Skripnyak, A. V. Ponomareva, M. P. Belov, et al., Mater. Design, 140, 357–365 (2018).

    Article  Google Scholar 

  13. L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, et al., Nature, 550, No. 7677, 492–495 (2017).

    Article  ADS  Google Scholar 

  14. A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, et al., J. Mater. Sci. Technol., 35, No. 1, 201–206 (2019).

    Article  Google Scholar 

  15. K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Lett. Mater., 9, No. 2, 197–201 (2019).

    Article  Google Scholar 

  16. K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Comput. Mater. Sci., 155, 312–319 (2018).

    Article  Google Scholar 

  17. A. Stukowski, Model. Simul. Mater. Sci. Eng., 18, 015012 (2010).

  18. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 91, 4950–4963 (1987).

  19. A. Stukowski and K. Albe, Model. Simul. Mater. Sci. Eng., 18, 085001 (2010).

  20. S. G. Psakh’e and K. P. Zol'nikov, Comb. Exp. Shock Waves, 34, No. 3, 366–368 (1998).

    Article  Google Scholar 

  21. J. Yin, Y. Wang, X. Yan, et al., Comput. Mater. Sci., 148, 141–148 (2018).

    Article  Google Scholar 

  22. S. Plimpton, J. Comput. Phys., 117, 1–19 (1995).

  23. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B, 33, 7983–7991 (1986).

  24. M. I. Mendelev, S. Han, W-J. Son, et al., Phys. Rev. B, 76, 214105 (2007).

  25. Y. Mishin and D. Farkas, Philos. Mag. A, 78, 29–56 (1998).

    Article  ADS  Google Scholar 

  26. T. J. Rupert, D. S. Gianola, Y. Gan, et al., Science, 326, 1686–1690 (2009).

    Article  ADS  Google Scholar 

  27. J. W. Cahn, Yu. Mishin, and A. Suzuki, Acta Mater., 54, 4953–4975 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Zolnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 46–51, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolnikov, K.P., Kryzhevich, D.S. & Korchuganov, A.V. Structural Transformations in the Grain Boundary Region of Nanocrystalline Metals Under Mechanical Loading. Russ Phys J 62, 1357–1362 (2019). https://doi.org/10.1007/s11182-019-01855-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01855-0

Keywords

Navigation