Skip to main content
Log in

Kinetics of formation of discrete nanostructures during vacuum condensation from a single-component vapor

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The kinetics of cluster formation during the vacuum condensation of thin films from a single-component vapor is investigated by numerically solving the system of kinetic equations. The size distributions of clusters containing from a few atoms to several hundred atoms are obtained. The regions of dominant nucleation on active centers (point defects of the crystal substrate) and random nucleation are determined in the “condensation rate-temperature” coordinates. It is demonstrated that the regions corresponding to the pseudolayer and three-dimensional (rough) growth mechanisms can be separated in the condensation rate-temperature coordinates. The inference is made that the experimentally observed bimodal size distributions of islands can be associated with the difference between the growth rates of clusters at the stage preceding the coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zinsmeister, Jpn. J. Appl. Phys. 2 (1), 545 (1974).

    Google Scholar 

  2. G. Zinsmeister, in Processes of Growth and Synthesis of Semiconductor Crystals and Films (Nauka, Novosibirsk, 1975), Part 1, p. 11 [in Russian].

    Google Scholar 

  3. J. A. Venables, Philos. Mag. 27, 697 (1973).

    Google Scholar 

  4. J. A. Venables, Phys. Rev. B: Condens. Matter 36, 4153 (1987).

    ADS  Google Scholar 

  5. M. C. Bartelt, M. C. Tringides, and J. W. Evans, Phys. Rev. B: Condens. Matter 47, 13 891 (1993).

    Google Scholar 

  6. G. S. Bales and D. C. Chrzan, Phys. Rev. B: Condens. Matter 50, 6057 (1994).

    ADS  Google Scholar 

  7. M. C. Bartelt, S. Günther, E. Kopatzki, and R. J. Behm, Phys. Rev. B: Condens. Matter 53, 4099 (1996).

    ADS  Google Scholar 

  8. M. C. Bartelt, C. R. Stoldt, C. J. Jenks, P. A. Thiel, and J. W. Evans, Phys. Rev. B: Condens. Matter 59, 3125 (1999).

    ADS  Google Scholar 

  9. E. V. Shvedov and D. E. Andrusevich, Vestn. Voronezh. Gos. Tekh. Univ., Materialovedenie 1.3, 93 (1998).

    Google Scholar 

  10. V. M. Ievlev, E. V. Shvedov, and D. E. Andrusevitch, Phys. Low-Dimens. Semicond. Struct. 11/12, 107 (1999).

    Google Scholar 

  11. V. M. Ievlev, D. V. Moskalev, and E. V. Shvedov, Vestn. Voronezh. Gos. Tekh. Univ., Materialovedenie 1.13, 65 (2002).

    Google Scholar 

  12. A. A. Sokol and V. M. Kosevich, Kristallografiya 14, 527 (1969) [Sov. Phys. Crystallogr. 14, 438 (1969)].

    Google Scholar 

  13. V. I. Trofimov, A. E. Chalykh, and É. I. Evko, Fiz. Tverd. Tela (Leningrad) 13, 334 (1971) [Sov. Phys. Solid State 13, 277 (1971)].

    Google Scholar 

  14. V. M. Kosevich, L. S. Palatnik, A. A. Sokol, and P. P. Arkhipov, Dokl. Akad. Nauk SSSR 180 (3), 586 (1968).

    Google Scholar 

  15. R. Ueda and T. Inuzuka, J. Cryst. Growth 6, 79 (1971).

    Google Scholar 

  16. V. S. Postnikov, V. M. Ievlev, V. A. Ammer, and E. V. Shvedov, in Proceedings of the 3rd Workshop on Nuclear Radiation Physics and Technology, Tula, Russia, 1976 (Tula, 1976), p. 69 [in Russian].

  17. V. M. Ievlev, E. V. Shvedov, and D. E. Andrusevich, in Proceedings of the 14th International Symposium on Thin Films in Optics and Electronics, Kharkov, Ukraine, 2002 (Kharkov, 2002), Part 1, p. 23 [in Russian].

  18. V. I. Trofimov and V. A. Osadchenko, Growth and Morphology of Thin Films (Energoatomizdat, Moscow, 1993) [in Russian].

    Google Scholar 

  19. V. I. Trofimov, in Active Surface of Solids (VINITI, Moscow, 1976), p. 196 [in Russian].

    Google Scholar 

  20. G. Haas, A. Menck, H. Brune, J. V. Barth, J. A. Venables, and K. Kern, Phys. Rev. B: Condens. Matter 61, 11105 (2000).

    ADS  Google Scholar 

  21. A. J. Donohoe and J. L. Robins, J. Cryst. Growth 17, 70 (1972).

    Article  Google Scholar 

  22. J. L. Robins and A. J. Donohoe, Thin Solid Films 12, 255 (1972).

    Article  Google Scholar 

  23. H. Schmeisser and H. Harsdorff, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 25, 1896 (1970).

    Google Scholar 

  24. W. L. Morris and R. L. Hines, Appl. Phys. 41, 2231 (1970).

    Google Scholar 

  25. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168 (10), 1083 (1998) [Phys. Usp. 41, 983 (1998)].

    Google Scholar 

  26. V. M. Ievlev and E. V. Shvedov, Fiz. Tverd. Tela (Leningrad) 20 (3), 809 (1978) [Sov. Phys. Solid State 20 (3), 469 (1978)].

    Google Scholar 

  27. E. V. Shvedov, Vestn. Voronezh. Gos. Tekh. Univ., Materialovedenie 1.1, 158 (1996).

    Google Scholar 

  28. E. V. Shvedov and V. V. Nechaev, Izv. Akad. Nauk, Ser. Fiz. 61 (5), 959 (1997).

    Google Scholar 

  29. J. G. Skofronick and W. B. Phillips, Appl. Phys. 38 (12), 4791 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ievlev, V.M., Shvedov, E.V. Kinetics of formation of discrete nanostructures during vacuum condensation from a single-component vapor. Phys. Solid State 48, 144–149 (2006). https://doi.org/10.1134/S1063783406010276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406010276

PACS numbers

Navigation