Skip to main content
Log in

Preparation of high-purity dispersed single-crystal diamond particles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The demand for quantum functional devices with diamond as the primary structure is rapidly increasing, leading to higher quality requirements for the preparation of micron-scale diamonds. We utilized a low-density seeding method to control diamond growth in the chemical vapor deposition equipment, resulting in the fabrication of micrometer-scale and dispersed single-crystal diamond particles. By discussing the effects of different methane concentrations, growth temperatures, and working pressures on the morphology, crystal faces, crystal properties, and bonding states of diamond, we explored the influence of various process parameters on the diamond growth process. This study provides a solution for preparing high-quality dispersed diamond at the micrometer scale, paving the way for high-quality substrates for quantum devices based on diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L Zang, K Zhou and Q Wei et al Appl. Energy 208 233 (2019)

    Google Scholar 

  2. S Navalons, A Dhakshinamoorthy and M Alvaro et al Chem. Mater. 32 4116 (2020)

    Article  Google Scholar 

  3. X L Yuan, Y T Zheng and X H Zhu et al Int. J. Miner. Metall. Mater. 26 1195 (2019)

    Article  Google Scholar 

  4. H-C Lu, Y-C Peng and M-Y Lin et al Carbon 111 835 (2017)

    Article  Google Scholar 

  5. Pengfei Wang, Sanyou Chen and Maosen Guo et al Sci. Adv. 5 eaau8038 (2019)

    Article  ADS  Google Scholar 

  6. Y J Lu, C N Lin and C X Shan et al Adv. Opt. Mater. 06 1800359 (2018)

    Article  Google Scholar 

  7. N R Lee, Y S Jun and K Moon et al Jap. J. Appl. Phys. 56 035506 (2017)

    Article  ADS  Google Scholar 

  8. N Wu, M Sun and H Guo et al Energies 16 7228 (2023)

    Article  Google Scholar 

  9. S K Gordeev, S B Korchagina and V E Zapevalov et al Radiophys. Quantum El. 65 434 (2022)

    Article  ADS  Google Scholar 

  10. Y Liu, Y Zhang and K Cheng et al Angew Chem. Int. Ed. Engl. 56 15607 (2017)

    Article  Google Scholar 

  11. J V Macpherson Phys. Chem. Chem. Phys. 17 2935 (2015)

    Article  Google Scholar 

  12. P Nemeth, K McColl and R L Smith et al Nano Lett. 20 3611 (2020)

    Article  ADS  Google Scholar 

  13. H Kabir, H Zhu and J May et al Carbon 144 831 (2019)

    Article  Google Scholar 

  14. Z Zhai, B Leng and N Yang et al Small 15 1901527 (2019)

    Article  Google Scholar 

  15. N Yang, S Yu and J V Macpherson et al Chem. Soc. Rev. 48 157 (2019)

    Article  Google Scholar 

  16. A J Lucio, R E P Meyler and M A Edwards et al ACS Sens. 5 789 (2020)

    Article  Google Scholar 

  17. P Ńemeth, K McColl and L A J Garvie et al Nat. Mater. 19 1126 (2020)

    Article  ADS  Google Scholar 

  18. E Sektarov, V Sedov and V Ralchenko et al Phys. Status Solidi A 220 2200283 (2023)

    Article  ADS  Google Scholar 

  19. Srivatsa Chakravarthi, Chris Moore and April Opsvig et al Phys. Rev. Mater. 4 023402 (2020)

    Article  Google Scholar 

  20. Chengyuan Yang, Zhaohong Mi and Huining Jin et al Carbon 203 842 (2023)

    Article  Google Scholar 

  21. T-J Wu, Y-K Tzeng and W-W Chang et al Nanotechnol 8 682 (2013)

    ADS  Google Scholar 

  22. A Pertsinidis, Y Zhang and S Chu Nature 466 647 (2010)

    Article  ADS  Google Scholar 

  23. E Londero, E Bourgeois and M Nesladek et al Phys. Rev. B 97 241202 (2018)

    Article  ADS  Google Scholar 

  24. Rong Liu, Ren-Yu Tian and Yu-Jun Zhao J. Appl. Phys. 113 103516 (2013)

    Article  ADS  Google Scholar 

  25. T Iwasaki, F Ishibashi and Y Miyamoto et al M. Sci. Rep. 5 12882 (2015)

    Article  ADS  Google Scholar 

  26. A Magyar, W Hu and T Shanley et al I. Nat. Commun. 5 3523 (2014)

    Article  ADS  Google Scholar 

  27. R Kolesov, S Lasse and C Rothfuchs et al Phys. Rev. Lett. 120 033903 (2018)

    Article  ADS  Google Scholar 

  28. M Zhong, M P Hedges and R L Ahlefeldt et al Nature 517 177 (2015)

    Article  ADS  Google Scholar 

  29. V I Lavrinenko J. Superhard Mater. 44 431 (2022)

    Article  Google Scholar 

  30. Q Lu, H Gong and Q Guo et al Materials 14 6225 (2021)

    Article  ADS  Google Scholar 

  31. H Yamada, A Chayahara and Y Mokuno et al Appl. Phys. Lett. 104 102110 (2014)

    Article  ADS  Google Scholar 

  32. Xin Tan, Zhanqing He and Qiao Yang et al Appl. Surf. Sci. 609 155246 (2023)

    Article  Google Scholar 

  33. A C Ferrari and J. Robertson Phys. Rev. B. 64 075414 (2001)

    Article  ADS  Google Scholar 

  34. F Klauser, D Steinmüller-Nethl and R Kaindl et al Chem. Vap. Depos. 16 127 (2010)

    Article  Google Scholar 

  35. I I Vlasov, E Goovaerts and V G Ralchenko et al Diam. Relat. Mater. 16 2074 (2007)

    Article  ADS  Google Scholar 

  36. A C Ferrari and J Robertson Phys. Rev. B 61 14095 (2000)

    Article  ADS  Google Scholar 

  37. C J Tang, A J Neves and S Pereira et al Diam. Relat. Mater. 17 72 (2008)

    Article  ADS  Google Scholar 

  38. P Safaie, A Eshaghi and S R Bakhshi Diam. Relat. Mater. 70 91 (2016)

    Article  ADS  Google Scholar 

  39. F Jia, Y Bai and F Qu et al Vacuum 84 930 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (62365015, 61765012, 51965053), the Natural Science Foundation of Inner Mongolia (2023MS05047, 2019MS05008, 2020MS05036), the Fundamental Research Funds for lnner Mongolia University of Science &Technology(2023RCTD011, 2023YXXS012), the National Key Research and Development Program of China (2017YFF0207200, 2017YFF0207203), the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (2017CXYD-2, KCBJ2018031), the Inner Mongolia University of Science and Technology Youth Fund Project (202/0303022006), and the Scientific Research Program of Higher Education Institutions in Inner Mongolia Autonomous Region (NJZY23082).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. These authors contributed equally.

Corresponding author

Correspondence to Xin Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., He, Z., Yang, Q. et al. Preparation of high-purity dispersed single-crystal diamond particles. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03213-4

Keywords

Navigation