Skip to main content
Log in

Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al0.15Ga0.85As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5–9 μs pulses at 20 Hz repetition rate. Using the integral output power curves measured with different pulse durations, we consider the potential mechanisms of QCL temperature degradation using Arrhenius plots. Moreover, we present the spectra of the lasers measured at fixed operating points for devices A, C and with current scanning for device B in a wide temperature range from 5 to 120 K. We hope that our results will prove useful for research concerning QCL maximum operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. S. Vitiello, G. Scalari, B. Williams, P. D. Natale. Opt. Express, 23, 5167 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. G. Liang, T. Liu, Q. J. Wang. IEEE J. Select. Top. Quant. Electron., 23, 1200118 (2017).

    Google Scholar 

  3. L. Bosco, M. Franckie, G. Scalari, M. Beck, A. Wacker, J. Faist. Appl. Phys. Lett., 115, 010601 (2019).

    Article  ADS  Google Scholar 

  4. A. Khalatpour, A. K. Paulsen, C. Deimert, Z. R. Wasilewski, Q. Hu. Nature Photonics, 15, 16 (2021).

    Article  ADS  CAS  Google Scholar 

  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, H. C. Liu. Opt. Express, 20, 3866 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. S. Khanal, L. Zhao, J. Reno, S. Kumar. J. Opt., 16, 094001 (2014).

    Article  ADS  CAS  Google Scholar 

  7. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno. Appl. Phys. Lett., 83, 207 (2003).

    Article  ADS  CAS  Google Scholar 

  8. P. Slingerland, C. Baird, R. H. Giles. Semicond. Sci. Technol., 27, 65009 (2012).

    Article  Google Scholar 

  9. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno. Appl. Phys. Lett., 86, 111115 (2005).

    Article  ADS  Google Scholar 

  10. A. Albo, Q. Hu. Appl. Phys. Lett., 106, 131108 (2015).

    Article  ADS  Google Scholar 

  11. R. A. Khabibullin, N. V. Shchavruk, D. S. Ponomarev, D. V. Ushakov, A. A. Afonenko, K. V. Maremyanin, O. Yu. Volkov, V. V. Pavlovskiy, A. A. Dubinov. Opto-Electron. Rev., 27, 329 (2019).

    Article  ADS  Google Scholar 

  12. R. A. Khabibullin, N. V. Shchavrak, A. Yu. Pavlov, D. S. Ponomarev, K. N. Tomosh, R. R. Galiev, P. P. Maltsev, A. E. Zhukov, G. E. Tsyrlin, F. I. Zubov, Zh. I. Alferov. FTP 50, 1395 (2016) (in Russian).

    Google Scholar 

  13. O. Yu. Volkov, I. N. Dyuzhikov, M. V. Logunov, S. A. Nikitov, V. V. Pavlovsky, N. V. Shchavruk, A. Yu. Pavlov, R. A. Khabibullin. Radiotekhnika i elektronika, 63, 981 (2018) (in Russian).

    Google Scholar 

  14. J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie. Opt. Express, 17 (22), 20476 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. A. A. Lastovkin, A. V. Ikonnikov, V. I. Gavrilenko, A. V. Antonov, Yu. G. Sadofiev. Izv. vuzov. Radiofizika, 54, 676 (2011) (in Russian).

    Google Scholar 

  16. R. A. Khabibullin, N. V. Shchavruk, D. S. Ponomarev, D. V. Ushakov, A. A. Afonenko, I. S. Vasilevsky, A. A. Zaitsev, A. I. Danilov, O. Yu. Volkov, V. V. Pavlovsky, K. V. Maremyanin, V. I. Gavrilenko. FTP, 52 (11), 1268 (2018) (in Russian).

    Google Scholar 

  17. A. A. Lastovkin, A. V. Ikonnikov, A. V. Antonov, V. Ya. Aleshkin, V. I. Gavrilenko, Yu. G. Sadofiev. Pis’ma ZhTF, 42 (5), 15 (2016) (in Russian).

    Google Scholar 

Download references

Funding

The study was performed with the support of RSF grant no. 21-72-30020. D.A. Belov thanks the “BAZIS” foundation for support (grant no. 21-2-9-45-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Belov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, D.A., Ikonnikov, A.V., Pushkarev, S.S. et al. Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers. Semiconductors 57, 383–388 (2023). https://doi.org/10.1134/S1063782623070059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623070059

Navigation