Skip to main content
Log in

SERS-Active Substrates Based on Embedded Ag Nanoparticles in c-Si: Modeling, Technology, Application

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A simple method for obtaining SiO2:Ag:Si and Ag:Si hybrid nanostructures is presented. High-temperature annealing of an Ag island film on the surface of c-Si makes it possible to preserve the plasmonic properties of Ag nanoparticles and protect them from external influences by coating them with a thermally grown layer of SiO2. The calculation of the electric field strength distribution in the structure with embedded Ag nanoparticles in c-Si demonstrates the presence of intrinsic “hot spots” at the corners of the nanoparticles, which leads to a maximum enhancement factor (~106) of Raman scattering. A numerical calculation of the dependence of the spectral position of a localized plasmon resonance on the geometry of structures can serve as a basis for their design in the future. Surface-enhanced Raman scattering showed reliable detection of the methyl orange from an aqueous solution at a concentration of <10–5 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. J. Langer, et al. ACS Nano, 149 (1), 28 (2020). https://doi.org/10.1021/acsnano.9b04224

    Article  CAS  Google Scholar 

  2. R. Wu, T. Mathieu, C. J. Storey, Q. Jin, J. Collins, L. T. Canham, A. Kaplan. Adv. Optical Mater., 9, 2002119 (2021). https://doi.org/10.1002/adom.202002119

    Article  CAS  Google Scholar 

  3. C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu, B. Ren. Chem. Rev., 118 (10), 4946 (2018). https://doi.org/10.1021/acs.chemrev.7b00668

    Article  CAS  Google Scholar 

  4. L. Xie, H. Zeng, J. Zhu, Z. Zhang, W. Xia. Nano Res., 15, 4374 (2022). https://doi.org/10.1007/s12274-021-4017-4

    Article  ADS  Google Scholar 

  5. Q. Zou, S. Mo, X. Pei, Y. Wang, T. Xue, M. Mayilamu, G. Qin. AIP Advances, 8, 085302 (2018). https://doi.org/10.1063/1.5039600

    Article  ADS  CAS  Google Scholar 

  6. J. Wang, Z. Jia, C. Lv. Opt. Express, 26, 6507 (2018). https://doi.org/10.1364/OE.26.006507

    Article  ADS  CAS  PubMed  Google Scholar 

  7. A. A. Ermina, N. S. Solodovchenko, K. V. Prigoda, V. S. Levitskii, V. O. Bolshakov, M. Yu. Maximov, Yu. M. Koshtyal, S. I. Pavlov, V. A. Tolmachev, Yu. A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). https://doi.org/10.1016/j.apsusc.2022.155146

    Article  CAS  Google Scholar 

  8. Z. Zhang, J. Wang, K. B. Shanmugasundaram, B. Yeo, A. Moller, A. Wuethrich, L. L. Lin, M. Trau. Small, 16, 1905614 (2020). https://doi.org/10.1002/smll.201905614

    Article  CAS  Google Scholar 

  9. S. Bamrungsap, A. Treetong, C. Apiwat, T. Wuttikhun, T. Dharakul. Microchim. Acta, 183, 249 (2016). https://doi.org/10.1007/s00604-015-1639-9

    Article  CAS  Google Scholar 

  10. W. Kim, S. H. Lee, J. H. Kim, Y. J. Ahn, Y.-H. Kim, J. S. Yu, S. Choi. ACS Nano, 12 (7), 7100 (2018). https://doi.org/10.1021/acsnano.8b02917

    Article  CAS  PubMed  Google Scholar 

  11. D. Zhang, P. Liang, Z. Yu, J. Xia, D. Ni, D. Wang, Y. Zhou, Y. Cao, J. Chen, J. Chen, S. Jin. J. Hazard. Mater., 382, 121023 (2020). https://doi.org/10.1016/j.jhazmat.2019.121023

    Article  CAS  PubMed  Google Scholar 

  12. W. Fan, S. Yang, Y. Zhang, B. Huang, Z. Gong, D. Wang, M. Fan. ACS Sensors, 5 (11), 3599 (2020). https://doi.org/10.1021/acssensors.0c01908

    Article  CAS  PubMed  Google Scholar 

  13. T. Liyanage, A. Rael, S. Shaffer, S. Zaidi, J.V. Goodpaster, R. Sardar. Analyst, 143, 2012 (2018). https://doi.org/10.103 9/C8AN00008E.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou. Appl. Surf. Sci., 556, 149748 (2021). https://doi.org/10.1016/j.apsusc.2021.149748

  15. X. He, X. Zhou, Y. Liu, X. Wang. Sensors Actuators B: Chem., 311, 127676 (2020). https://doi.org/10.1016/j.snb.2020.127676

  16. Z. Deng, X. Chen, Y. Wang, E. Fang, Z. Zhang, X. Chen. Anal. Chem., 87 (1), 633 (2015). https://doi.org/10.1021/ac503341g

    Article  CAS  PubMed  Google Scholar 

  17. J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo. Anal. Chem., 88 (4), 2149 (2016). https://doi.org/10.1021/acs.analchem.5b03735

    Article  CAS  PubMed  Google Scholar 

  18. E. Galopin, J. NiedziøłkaJönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, S. Szunerits. J. Phys. Chem. C, 114 (27), 11769 (2010). https://doi.org/10.1021/jp1023839

    Article  CAS  Google Scholar 

  19. K. Kneipp, M. Moskovits, H. Kneipp. Surface-Enhanced Raman Scattering: Physics and Applications (Springer Verlag Berlin-Heidelberg, 2006). https://doi.org/10.1007/3-540-33567-6.

  20. M.-C. Wu, M.-P. Lin, S.-W. Chen, P.-H. Lee, J.-H. Li, W.-F. Su. RSC Advances, 4, 10043 (2014). https://doi.org/10.103 9/C3RA45255G.

    Article  ADS  CAS  Google Scholar 

  21. E. Galopin, A. Noual, J. NiedziøłkaJönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, S. Szunerits. J. Phys. Chem. C, 113, 15921 (2009). https://doi.org/10.1021/jp905154z

    Article  CAS  Google Scholar 

  22. R. P. Van Duyne (ed. by C. B. Moore). (N. Y., Academic Press, 1979) p. 101.

  23. P. Hildebrandt, M. Stockburger. J. Phys. Chem., 88, 5935 (1984). https://doi.org/10.1021/j150668a038

    Article  CAS  Google Scholar 

  24. V. A. Tolmachev, E. V. Gushchina, I. A. Nyapshaev, Yu. A. Zharova. Thin Sol. Films, 139352 (2022). https://doi.org/10.1016/j.tsf.2022.139352

  25. Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216, 1900318 (2019). https://doi.org/10.1002/pssa.201900318

    Article  ADS  CAS  Google Scholar 

  26. U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer Series in Materials Science, 1995).https://doi.org/10.1007/978-3-662-09109-8

    Book  Google Scholar 

  27. J. Chowdhury, M. Ghosh. J. Colloid Interface Sci., 277, 121 (2004). https://doi.org/10.1016/j.jcis.2004.04.030

    Article  ADS  CAS  PubMed  Google Scholar 

  28. A. Zarei, A. Shafiekhani. Mater. Chem. Phys., 242, 122559 (2020). https://doi.org/10.1016/j.matchemphys.2019.122559

    Article  CAS  Google Scholar 

  29. M. Z. Si, Y. P. Kang, Z. G. Zhang. Appl. Surf. Sci., 255 (11), 6007 (2009). https://doi.org/10.1016/j.apsusc.2009.01.055

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Krasilin for discussion of the article materials.

Funding

The paper was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state order no. 0040-2019-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zharova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermina, A.A., Solodovchenko, N.S., Prigoda, K.V. et al. SERS-Active Substrates Based on Embedded Ag Nanoparticles in c-Si: Modeling, Technology, Application. Semiconductors 57, 587–593 (2023). https://doi.org/10.1134/S1063782623040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623040061

Keywords:

Navigation