Skip to main content
Log in

Investigation of Photoluminescence in the InGaAs/GaAs System with 1100-nm Range Quantum Dots

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studying the optical properties of InGaAs quantum dots are presented. Single-layer InGaAs quantum dots with a height of 5.3, 3.6 and 2.6 monolayers, as well as three-stacked layers of tunnel-uncoupled quantum dots with a height of 2.6 monolayers were formed by molecular-beam epitaxy according to the Stransky–Krastanov mechanism on GaAs substrates, using the partial capping and annealing technique. A decrease in the size of quantum dots makes it possible to carry out a blueshift of the photoluminescence spectrum maximum from 1200 to 1090 nm, and an increase in the number of QD layers makes it possible to compensate for the decrease in the peak intensity. It is shown that this type of quantum dots is suitable for creating the lasers active regions with a vertical microcavity for neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov. Quantum Dot Heterostructures (Chichester, England, John Wiley & Sons Ltd, 1999) p. 344.

    Google Scholar 

  2. T. Heuser, J. Grose, S. Holzinger, M. M. Sommer, S. Reitzenstein. IEEE J. Select. Top. Quant. Electron., 26 (1), 1 (2020).

    Article  Google Scholar 

  3. T. Heuser, J. Groβe, A. Kaganskiy, D. Brunner, S. Reitzenstein. APL Photonics, 3 (11), 116103 (2018).

    Article  ADS  Google Scholar 

  4. I. I. Novikov, A. M. Nadtochiy, A. Yu. Potapov, A. G. Gladyshev, E. S. Kolodeznyi, S. S. Rochas, A. V. Babichev, V. V. Andryushkin, D. V. Denisov, L. Ya. Karachinsky, A. Yu. Egorov. J. Luminesc., 239, 118393 (2021).

    Article  CAS  ADS  Google Scholar 

  5. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, A. Forchel. Appl. Phys. Lett., 93 (6), 061104 (2008).

    Article  ADS  Google Scholar 

  6. A. Rantamäki, G. S. Sokolovskii, S. A. Blokhin, V. V. Dudelev, K. K. Soboleva, M. A. Bobrov, A. G. Kuzmenkov, A. P. Vasil’ev, A. G. Gladyshev, N. A. Maleev, V. M. Ustinov, O. Okhotnikov. Optics Lett., 40 (14), 3400 (2015).

  7. J. Groβe, P. Mrowiński, N. Srocka, S. Reitzenstein. Appl. Phys. Lett., 119 (6), 061103 (2021).

  8. X. Hu, Y. Zhang, D. Guzun, M.E. Ware, Y.I. Mazur, C. Lienau, G.J. Salamo. Sci. Rep., 10 (1), 10930 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. G. Sęk, P. Poloczek, K. Ryczko, J. Misiewicz, A. Löftier, J. P. Reithmaier, A. Forchel. J. Appl. Phys., 100 (10), 103529 (2006).

  10. A. Löffler. “Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren höchster Güte fur Experimente zur starken Exziton-Photon-Kopplung”, Dissertation (Würzburg, Germany, 2008) p. 191. https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2008/docId/2589 URN: urn:nbn:de:bvb:20-opus-30323.

  11. A. Löffler, J. P. Reithmaier, G. Sęk, C. Hofmann, S. Reitzenstein, M. Kamp, A. Forchel. Appl. Phys. Lett., 86 (11), 111105 (2005).

  12. P. Poloczek, G. Sęk, J. Misiewicz, A. Löffler, J. P. Reithmaier, A. Forchel. J. Appl. Phys., 100 (1), 013503 (2006).

    Article  ADS  Google Scholar 

  13. S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, A. Forchel. Phys. Rev. Lett., 103 (12), 127401 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. C. Hopfmann, A. Musial, M. Strauβ, A. M. Barth, M. Glässl, A. Vagov, M. Strauβ, C. Schneider, S. Höfling, M. Kamp, V. M. Axt, S. Reitzenstein. Phys. Rev. B, 92 (24), 245403 (2015).

    Article  ADS  Google Scholar 

  15. A. Löffler, J.-P. Reithmaier, A. Forchel, A. Sauerwald, D. Peskes, T. Kümmell, G. Bacher. J. Cryst. Growth, 286 (1), 6 (2006).

  16. N. Ozaki, S. Kanehira, Y. Hayashi, S. Ohkouchi, N. Ikeda, Y. Sugimoto, R.A. Hogg. J. Cryst. Growth, 477 (1), 230 (2017).

    Article  CAS  ADS  Google Scholar 

  17. K. Watanabe, T. Akiyama, Y. Yokoyama, K. Takemasa, K. Nishi, Y. Tanaka, M. Sugawara, Y. Arakawa. J. Cryst. Growth, 378, 627 (2013).

    Article  CAS  ADS  Google Scholar 

  18. R. P. Mirin, K. L. Silverman, D. H. Christensen, A. Roshko. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct., 18 (3), 1510 (2000).

    Article  CAS  ADS  Google Scholar 

  19. T. Finke, V. Sichkovskyi, J. P. Reithmaier. J. Cryst. Growth, 517, 1 (2019).

    Article  CAS  ADS  Google Scholar 

  20. S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gösele, J. Heydenreich, U. Richter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Ego-rov, P. S. Kop’ev, Zh. I. Alferov. Phys. Rev. B, 51 (20), 14766 (1995).

    Article  CAS  ADS  Google Scholar 

  21. H. Sasakura, S. Kayamori, S. Adachi, S. Muto. J. Appl. Phys., 102 (1), 013515 (2007).

    Article  ADS  Google Scholar 

  22. L. Wang, A. Rastelli, O. G. Schmidt. J. Appl. Phys., 100 (6), 064313 (2006).

    Article  ADS  Google Scholar 

  23. Z. R. Wasilewski, S. Fafard, J. P. McCaffrey. J. Cryst. Growth, 201–202, 1131 (1999).

  24. J. M. Garcia, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff. Appl. Phys. Lett., 72 (24), 3172 (1998).

    Article  CAS  ADS  Google Scholar 

  25. M. C. Löbl, S. Scholz, I. Söllner, J. Ritzmann, T. Denneulin, A. Koväcs, B. E. Kardynal, A. D. Wieck, A. Ludwig, R. J. Warburton. Commun. Phys., 2 (1), 93 (2019).

  26. J. H. Blokland, M. Bozkurt, J. M. Ulloa, D. Reuter, A. D. Wieck, P. M. Koenraad, P. C. M. Christianen, J. C. Maan. Appl. Phys. Lett., 94 (2), 023107 (2009).

    Article  ADS  Google Scholar 

  27. P. Podemski, M. Pieczarka, A. Maryński, J. Misiewicz, A. Löffler, S. Höfling, J. P. Reithmaier, S. Reitzenstein, G. Sęk. Superlat. Microstruct., 93, 214 (2016).

    Article  CAS  ADS  Google Scholar 

  28. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogo, S. S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich. Phys. Rev. B, 54, 8743 (1996).

    Article  CAS  ADS  Google Scholar 

  29. S. A. Blokhin, A. M. Nadtochiy, A. A. Krasivichev, L. Ya. Karachinsky, A. P. Vasiliev, V. N. Nevedsky, M. V. Maksimov, G. E. Tsyrlin, A. D. Buravlev, N. A. Maleev, A. E. Zhukov, N. N. Lollipops, V. M. Ustinov. FTP, 47 (1), 87 (2013) (in Russian).

    Google Scholar 

  30. V. I. Belyavsky, S. V. Shevtsov. FTP, 36 (7), 874 (2002) (in Russian).

    Google Scholar 

  31. A. Schliwa, M. Winkelnkemper, D. Bimberg. Phys. Rev. B, 76 (20), 205324 (2007).

    Article  ADS  Google Scholar 

  32. M. Grundmann, D. Bimberg. Jpn. J. Appl. Phys., 36 (pt. 1, no. 6B), 4181 (1997).

Download references

Funding

The study of the authors from the A.F. Ioffe Institute of Physics and Technology of the Russian Academy of Sciences was financed by a grant from the Russian Science Foundation no. 22-19-00221, https://rscf.ru/project/22-19-00221/ in terms of design development, epitaxy of heterostructures, TEM studies, study of microphotoluminescence spectra. N.V. Kryzhanovskaya is grateful for the support of the Fundamental Research Program of the National Research University “Higher School of Economics” regarding the analysis of photoluminescence spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Babichev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Komarov, S.D., Tkach, Y.S. et al. Investigation of Photoluminescence in the InGaAs/GaAs System with 1100-nm Range Quantum Dots. Semiconductors 57, 93–99 (2023). https://doi.org/10.1134/S1063782623040012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623040012

Navigation