Skip to main content
Log in

Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy

  • BASIC RESEARCH
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO2 substrate an amorphous layer of Mo0.06Si0.31N0.63 93 nm thick is formed, which is successively coated with polycrystalline layers of Cr0.56N0.44, Cr0.74C0.06N0.2, and Cr0.4N0.26O0.3 with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo0.06Si0.31N0.63 layer, and also showed that polycrystalline layers of Cr0.56N0.44, Cr0.74C0.06N0.2, and Cr0.4N0.26O0.3 formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. Kitui, M. M. Mwamburi, F. Gaitho, and C. M. Mag- hanga, Int. J. Thin Film Sci. Technol. 4, 17 (2015).

    Google Scholar 

  2. C. Zhou, J. Zhu, S. E. Foss, et al., Energy Proc. 77, 434 (2015). https://doi.org/10.1016/j.egypro.2015.07.061

    Article  CAS  Google Scholar 

  3. K. Yao, H. Ma, M. Huang, et al., ACS Appl. Nano Mater. 2, 5512 (2019).https://doi.org/10.1021/acsanm.9b01097

    Article  CAS  Google Scholar 

  4. O. Lupan, D. Santos-Carballal, N. Ababii, et al., ACS Appl. Mater. Interfaces 13, 32363 (2021). https://doi.org/10.1021/acsami.1c04379

    Article  CAS  PubMed  Google Scholar 

  5. Y. Zheng, Y. Li, T. Wu, et al., Nano Energy 62, 521 (2019). https://doi.org/10.1016/j.nanoen.2019.05.069

    Article  CAS  Google Scholar 

  6. F.-I. Lai, J.-F. Yang, J.-E. Li, et al., Nanomaterials 13, 432 (2023). https://doi.org/10.3390/nano13030432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. V. Lovygin, N. I. Borgardt, and A. S. Bugaev, Izv. Vyssh. Uchebn. Zaved., Elektron. 20, 431 (2015).

    Google Scholar 

  8. D. A. Abdullaev, R. A. Milovanov, R. L. Volkov, Ross. Tekhnol. Zh. 8, 44 (2020). https://doi.org/10.32362/2500-316X-2020-8-5-44-67

    Article  Google Scholar 

  9. K. Shubham and A. Gupta, Integrated Circuit Fabrication, 1st ed. (CRC, Boca Raton, FL, 2021).

    Book  Google Scholar 

  10. Handbook of Photomask Manufacturing Technology, Ed. by S. A. Rizvi (CRC, Boca Raton, FL, 2005).

    Google Scholar 

  11. Y. Feng, Q. Huang, Y. Zhuang, et al., Opt. Express 29, 13416 (2021). https://doi.org/10.1364/OE.422483

    Article  CAS  PubMed  ADS  Google Scholar 

  12. A. E. Yakshin, E. Louis, P. C. Görts, et al., Phys. B (Amsterdam, Neth.) 283, 143 (2000). https://doi.org/10.1016/S0921-4526(99)01909-2

  13. W. Braun, Applied RHEED: Reflection High-Energy Electron Diffraction during Crystal Growth (Springer, Berlin, 1999). https://doi.org/10.1007/BFb0109548

    Book  Google Scholar 

  14. TOF-SIMS: Materials Analysis by Mass Spectrometry, Ed. by J. C. Vickerman and D. Briggs, 2nd ed. (IM Publ., Chichester, 2013).

    Google Scholar 

  15. C. C. Chang, Surf. Sci. 25, 53 (1971). https://doi.org/10.1016/0039-6028(71)90210-X

    Article  CAS  ADS  Google Scholar 

  16. J. I. Goldstein, D. E. Newbury, J. R. Michael, et al., Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed. (Springer, New York, 2017). https://doi.org/10.1007/978-1-4939-6676-9

    Book  Google Scholar 

  17. S. N. Magonov and M.-H. Whangbo, Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis (VCH, Weinheim, 1996). https://doi.org/10.1002/9783527615117

    Book  Google Scholar 

  18. Transmission Electron Microscopy. Diffraction, Imaging, and Spectrometry, Ed. by C. B. Carter and D. B. Williams (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-26651-0

    Book  Google Scholar 

  19. Introduction to Focused Ion Beams. Instrumentation, Theory, Techniques and Practice, Ed. by L. A. Giannuzzi and F. A. Stevie (Springer, New York, 2004). https://doi.org/10.1007/b101190

    Book  Google Scholar 

  20. Ya. S. Grishina, N. I. Borgardt, R. L. Volkov, D. G. Gromov, and S. V. Dubkov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 226 (2017). https://doi.org/10.1134/S102745101701027X

    Article  CAS  Google Scholar 

  21. A. I. Nepomnyashchikh, A. A. Shalaev, T. Yu. Sizova, A. S. Paklin, A. N. Sapozhnikov, and L. A. Pavlova, Crystallogr. Rep. 63, 290 (2018). https://doi.org/10.1134/S1063774518020153

    Article  CAS  ADS  Google Scholar 

  22. V. S. Teodorescu, L. C. Nistor, M. Popescu, et al., Thin Solid Films 397, 12 (2001). https://doi.org/10.1016/S0040-6090(01)01408-0

    Article  CAS  ADS  Google Scholar 

  23. A. Banerjee, L. J. Baker, A. Doye, et al., Supercond. Sci. Technol. 30, 084010 (2017). https://doi.org/10.1088/1361-6668/aa76d8

    Article  CAS  ADS  Google Scholar 

  24. H. Kattelusm, M. Ylönen, and M. Blomberg, Fatigue Fract. Eng. Mater. Struct. 28, 743 (2005). https://doi.org/10.1111/j.1460-2695.2005.00887.x

    Article  CAS  Google Scholar 

  25. R. Blix, Z. Phys. Chem. B 3, 229 (1929). https://doi.org/10.1515/zpch-1929-0317

    Article  CAS  Google Scholar 

  26. J. C. Bennett and R. F. Egerton, Microsc. Microanal. 1, 143 (1995). https://doi.org/10.1017/S1431927695111435

  27. D. R. G. Mitchell, Microsc. Res. Tech. 71, 588 (2008). https://doi.org/10.1002/jemt.20591

    Article  CAS  PubMed  Google Scholar 

  28. D. R. G. Mitchell and J. A. Van den Berg, Ultramicroscopy 160, 140 (2016). https://doi.org/10.1016/j.ultramic.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  29. D. R. G. Mitchell and D. Schaffer, Ultramicroscopy 103, 319 (2005). https://doi.org/10.1016/j.ultramic.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  30. A. R. Hammersley, J. Appl. Crystallogr. 49, 646 (2016). https://doi.org/10.1107/S1600576716000455

    Article  CAS  ADS  Google Scholar 

  31. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010). https://doi.org/10.1107/S002188981003049927

    Article  CAS  ADS  Google Scholar 

  32. A. I. Saville, A. Creuziger, E. B. Mitchell, et al., Integr. Mater. Manuf. Innov. 10, 461 (2021). https://doi.org/10.1007/s40192-021-00224-5

    Article  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of a state assignment (agreement FSMR-2023-0014) and using equipment of the Center for Common Use “Diagnostics and modification of microstructures and nanoobjects.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Volkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, R.L., Borgardt, N.I. Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy. Semiconductors 57, 1–10 (2023). https://doi.org/10.1134/S1063782623010098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623010098

Keywords:

Navigation