Skip to main content
Log in

Formation of Planar Field-Emission Devices Based on Carbon Nanotubes on Co–Nb–N–(O) Alloy

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract—

Integrated field-emission devices and integrated circuits (ICs) based on them are a promising direction in microelectronics, which is associated with the use of low-voltage and stable field emitters based on nanomaterials, such as carbon nanotubes (CNTs). The planar design of the field-emission device makes it possible to form CNTs at the end of a thin catalyst film 1–50 nm thick. The paper presents the results of the implementation of an integrated technology for manufacturing planar field-emission diodes with a CNT cathode formed at the end of a thin conducting film. The CNTs are grown by chemical-vapor deposition. A thin film of initially amorphous Co–Nb–N–(O) alloy is used as the growth catalyst. A feature of the technology is the crystallization of Co–Nb–N–(O) alloy during heating in the process of chemical-vapor deposition. As a result, Co nanoparticles are formed on the alloy surface, which catalyze the growth of CNTs. It is shown that this specific feature makes it possible to form CNTs locally, only in open areas of the Co–Nb–N–(O) alloy, for example, at the ends of a thin film. The choice of the Co–Nb–N–(O) alloy is substantiated. The stages of formation of planar field-emission diodes on a silicon substrate are described using standard manufacturing processes. The results of measuring the IV characteristics of devices are presented. It is shown that the type of IV characteristics is determined by the field emission characteristic of CNTs. The developed technological method for the local synthesis of CNTs at the ends of topologically formed regions of a thin Co–Nb–N–(O) alloy film can be incorporated into an integrated technology for the formation of planar field-emission devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. G. I. Zebrev, Radiation Effects in Silicon Integrated Circuits with a High Degree of Integration, NIYaU MIFI, 2010. http://www.nano-e.rf/uploads/files/Zebrev_Radiacionnye_effekty.pdf. Accessed October 7, 2022.

  2. C. Leroy and P.-G. Rancoita, Rep. Prog. Phys. 70, 493 (2007). https://doi.org/10.1088/0034-4885/70/4/R01

    Article  ADS  Google Scholar 

  3. R. L. Pease, IEEE Trans. Nucl. Sci. 50, 539 (2003). https://doi.org/10.1109/TNS.2003.813133

    Article  ADS  Google Scholar 

  4. A. Takakura, K. Beppu, T. Nishihara, et al., Nat. Commun. 10, 3040 (2019). https://doi.org/10.1038/s41467-019-10959-7

    Article  ADS  Google Scholar 

  5. D. Hedman, H. R. Barzegar, A. Rosén, et al., Sci. Rep. 5, 16850 (2015). https://doi.org/10.1038/srep16850

    Article  ADS  Google Scholar 

  6. S. Huo, F. Liang, and A. Sun, High Voltage 5, 409 (2020). https://doi.org/10.1049/hve.2019.0257

    Article  Google Scholar 

  7. H. Kawano, Prog. Surf. Sci. 83, 1 (2008). https://doi.org/10.1016/j.progsurf.2007.11.001

    Article  ADS  Google Scholar 

  8. J. Jeske, D. W. M. Lau, X. Vidal, et al., Nat. Commun. 8, 14000 (2017). https://doi.org/10.1038/ncomms14000

    Article  ADS  Google Scholar 

  9. S. W. Gao, X. Z. Gong, Y. Liu, and Q. Q. Zhang, MSF 913, 985 (2018). https://doi.org/10.4028/www.scientific.net/msf.913.985

    Article  Google Scholar 

  10. S. V. Bulyarskii and A. S. Basaev, Carbon Nanotube Growth Catalysts (LAMBERT Academic, Saarbrücken, 2015).

    Google Scholar 

  11. S. V. Bulyarskiy, E. V. Zenova, A. V. Lakalin, M. S. Molodenskii, A. A. Pavlov, A. M. Tagachenkov, and A. V. Terent’ev, Tech. Phys. 63, 1834 (2018). https://doi.org/10.1134/S1063784218120253

    Article  Google Scholar 

  12. S. A. Gavrilov, E. A. Il’ichev, E. A. Poltoratskii, G. S. Rychkov, V. V. Dvorkin, N. N. Dzbanovsky, and N. V. Suetin, Tech. Phys. Lett. 30, 609 (2004).

    Article  ADS  Google Scholar 

  13. S. A. Gavrilov, E. A. Il’ichev, A. I. Kozlitin, E. A. Poltoratski, G. S. Rychkov, N. N. Dzbanovski, V. V. Dvorkin, and N. V. Suetin, Tech. Phys. Lett. 30, 466 (2004).

    Article  ADS  Google Scholar 

  14. S. A. Gavrilov, E. A. Il’ichev, E. A. Poltoratskii, and G. S. Rychkov, RF Patent No. 2250526, Byull. Izobret., No. 11 (2005).

  15. P. Mierczynski, S. Dubkov, K. Vasilev, et al., J. Mater. Res. Technol. 12, 512 (2021). https://doi.org/10.1016/j.jmrt.2021.03.015

    Article  Google Scholar 

  16. G. S. Eritsyan, D. G. Gromov, S. V. Dubkov, et al., J. Phys.: Conf. Ser. 2103, 012120 (2021). https://doi.org/10.1088/1742-6596/2103/1/012120

    Article  Google Scholar 

  17. P. Mierczynski, S. V. Dubkov, S. V. Bulyarskii, et al., J. Mater. Sci. Technol. 34, 472 (2018). https://doi.org/10.1016/j.jmst.2017.01.030

    Article  Google Scholar 

  18. C. Nico, T. Monteiro, and M. P. F. Graça, Prog. Mater. Sci. 80, 1 (2016). https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  Google Scholar 

  19. R. G. Forbes, Proc. R. Soc. A 469 (2158), 20130271 (2013). https://doi.org/10.1098/rspa.2013.0271

    Article  ADS  Google Scholar 

  20. E. O. Popov, A. G. Kolos’ko, and S. V. Filippov, Tech. Phys. Lett. 46, 838 (2020). https://doi.org/10.1134/S1063785020090096

    Article  ADS  Google Scholar 

  21. L. V. Keldysh, Sov. Phys. JETP 7, 665 (1958).

    Google Scholar 

  22. V. A. Gergel’, E. A. Il’ichev, E. A. Poltoratskii, et al., Sov. Phys. Semicond. 25, 1125 (1991).

    Google Scholar 

Download references

Funding

The work was supported financially by State Agreement 2020–2022 no. FSMR-2020-0018 and the Russian Foundation for Basic Research (Project no. 19-38-90206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Savitskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, D.G., Eritsyan, G.S., Kitsyuk, E.P. et al. Formation of Planar Field-Emission Devices Based on Carbon Nanotubes on Co–Nb–N–(O) Alloy. Semiconductors 56, 493–501 (2022). https://doi.org/10.1134/S1063782622130164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622130164

Keywords:

Navigation