Skip to main content
Log in

X-Ray Photoelectron Spectroscopy of the Surface Layers of Faceted Zinc-Oxide Nanorods

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Controlling the hydrophilic properties of the surface of nanomaterials is of interest for various applications including optics, photocatalysis, and spintronics. Methods for designing the defect structure of the surface layers of faceted zinc-oxide nanorods with sacrificial doping with iodine in the framework of hydrothermal synthesis are described. The features of the chemical composition of the surface of the obtained layers are studied using X-ray photoelectron spectroscopy. It is found that there are no peaks corresponding to the binding energy of iodine in X-ray photoelectron spectra. The spectrum of the 1s level of oxygen O for iodine-doped zinc-oxide nanorods shows an additional peak with a binding energy of 531.8 eV, which corresponds to the oxygen of OH groups. During heat treatment of the synthesized layers, iodine volatilizes, which leads to a change in the surface composition and an increase in the oxygen content of surface hydroxyl groups. A model is proposed for explaining the obtained experimental results. It is established that X-ray-photoelectron-spectroscopy techniques are efficient for analyzing the defect structure of the surface of functional layers based on faceted zinc-oxide nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. T. Pauporté, G. Bataille, L. Joulaud, and F. J. Vermersch, J. Phys. Chem. C 114, 194 (2010). https://doi.org/10.1021/jp9087145

    Article  Google Scholar 

  2. A. Bobkov, A. Varezhnikov, I. Plugin, et al., Sensors 19, 4265 (2019). https://doi.org/10.3390/s19194265

    Article  ADS  Google Scholar 

  3. R. Sankar Ganesh, M. Navaneethan, V. L. Patil, et al., Sens. Actuators, B 255, 672 (2018). https://doi.org/10.1016/j.snb.2017.08.015

    Article  Google Scholar 

  4. S. Zhao, Y. Shen, X. Yan, et al., Sens. Actuators, B 286, 501 (2019). https://doi.org/10.1016/j.snb.2019.01.127

    Article  Google Scholar 

  5. J.-W. Kim, Y. Porte, K. Y. Ko, et al., ACS Appl. Mater. Interfaces 9, 32876 (2017). https://doi.org/10.1021/acsami.7b09251

    Article  Google Scholar 

  6. S. S. Nalimova, I. E. Kononova, V. A. Moshnikov, et al., Bulg. Chem. Commun. 49, 121 (2017).

    Google Scholar 

  7. O. Lupan, T. Pauporté, B. Viana, et al., ACS Appl. Mater. Interfaces 2, 2083 (2010). https://doi.org/10.1021/am100334c

    Article  Google Scholar 

  8. M. H. Huang, S. Mao, H. Feick, et al., Science (Washington, DC, U. S.) 292 (5523), 1897 (2001). https://doi.org/10.1126/science.1060367

    Article  ADS  Google Scholar 

  9. N. A. Lashkova, A. I. Maximov, A. A. Ryabko, A. A. Bobkov, V. A. Moshnikov, and E. I. Terukov, Semiconductors 45, 1254 (2011).

    Google Scholar 

  10. J. Luo, Y. Wang, and Q. Zhang, Solar Energy 163, 289 (2018). https://doi.org/10.1016/j.solener.2018.01.035

    Article  ADS  Google Scholar 

  11. Z. Zang, Appl. Phys. Lett. 112, 042106 (2018). https://doi.org/10.1063/1.5017002

    Article  ADS  Google Scholar 

  12. L. Wang, D. B. Li, K. Li, et al., Nat. Energy 2, 17046 (2017). https://doi.org/10.1038/nenergy.2017.46

    Article  ADS  Google Scholar 

  13. V. Parihar, M. Raja, and R. Paulose, Rev. Adv. Mater. Sci. 53, 119 (2018). https://doi.org/10.1515/rams-2018-0009

    Article  Google Scholar 

  14. K. S. Siddiqi, A. ur Rahman, Tajuddin, and A. Husen, Nanoscale Res. Lett. 13, 141 (2018). https://doi.org/10.1186/s11671-018-2532-3

    Article  ADS  Google Scholar 

  15. X. Wang, M. Ahmad, and H. Sun, Materials 10, 1304 (2017). https://doi.org/10.3390/ma10111304

    Article  ADS  Google Scholar 

  16. C. Fan, F. Sun, X. Wang, et al., Nanomaterials 9, 1277 (2019). https://doi.org/10.3390/nano9091277

    Article  Google Scholar 

  17. I. A. Nagovitsyn, G. K. Chudinova, A. V. Lobanov, E. A. Boruleva, V. A. Moshnikov, S. S. Nalimova, and I. E. Kononova, Russ. J. Phys. Chem. B 12, 651 (2018). https://doi.org/10.1134/S1990793118040292

    Article  Google Scholar 

  18. A. A. Ryabko, A. I. Maximov, V. N. Verbitskii, V. S. Levitskii, V. A. Moshnikov, and E. I. Terukov, Semiconductors 54, 1496 (2020). https://doi.org/10.1134/S1063782620110238

    Article  ADS  Google Scholar 

  19. Q. Luo, P. Xu, Y. Qiu, et al., Mater. Lett. 198, 192 (2017). https://doi.org/10.1016/j.matlet.2017.04.032

    Article  Google Scholar 

  20. M. Sharma, M. Joshi, S. Nigam, et al., Chem. Eng. J. 358, 540 (2019). https://doi.org/10.1016/j.cej.2018.10.031

    Article  Google Scholar 

  21. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Science (Washington, DC, U. S.). 331 (6018), 746 (2011). https://doi.org/10.1126/science.1200448

    Article  ADS  Google Scholar 

  22. P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, and C.-M. Wang, Appl. Phys. A 90, 317 (2008). https://doi.org/10.1007/s00339-007-4275-3

    Article  ADS  Google Scholar 

  23. S. S. Karpova, V. A. Moshnikov, A. I. Maksimov, et al., Semiconductors 47, 1026 (2013). https://doi.org/10.1134/S1063782613080095

    Article  ADS  Google Scholar 

  24. S. S. Nalimova, Z. V. Shomakhov, V. A. Moshnikov, et al., Tech. Phys. 65, 1087 (2020). https://doi.org/10.1134/S1063784220070142

    Article  Google Scholar 

  25. Z. V. Shomakhov, S. S. Nalimova, Z. Kh. Kalazhokov, and V. A. Moshnikov, Fiz.-Khim. Asp. Izuch. Klast., Nanostrukt. Nanomater., No. 12, 222 (2020). https://doi.org/10.26456/pcascnn/2020.12.222

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Shomakhov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shomakhov, Z.V., Nalimova, S.S., Bobkov, A.A. et al. X-Ray Photoelectron Spectroscopy of the Surface Layers of Faceted Zinc-Oxide Nanorods. Semiconductors 56, 450–454 (2022). https://doi.org/10.1134/S1063782622130097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622130097

Keywords:

Navigation