Skip to main content
Log in

Simulation of Silicon Carbide Sputtering by a Focused Gallium Ion Beam

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract—

The precision fabrication of microstructures and nanostructures by the focused-ion-beam method is significantly simplified by the simulation of sputtering of materials by accelerated ions. A widely used approach to such simulation is the Monte Carlo method, which, to be correctly used, requires data on the surface binding energy of sample atoms. In this study, to obtain data on the surface binding energy for silicon carbide, test structures in the form of rectangular areas sputtered using gallium ions with a dose of 1017 cm–2 are fabricated. Their cross sections are studied by transmission electron microscopy and energy-dispersive X‑ray microanalysis. The average gallium concentration in the vicinity of its maximum is found to be \({{\langle {{C}_{{{\text{Ga}}}}}\rangle }_{{\exp }}}\) = 25 at %. This value and a sputtering yield of Yexp = 2.1 are used for comparison with the results of calculation in the SDTrimSP 5.07 software package using the R factor. The comparison is made using available continuous and discrete models and the proposed discrete-continuous model for calculating the surface binding energy. The best agreement between the calculated and experimental data is obtained with the discrete-continuous model, which yields \(\left\langle {{{C}_{{{\text{Ga}}}}}} \right\rangle \) = 30 at % and Y = 2.57, as well as the physically adequate values of the surface binding energy, by varying two fitting parameters. The efficiency of the discrete-continuous model is due to the fact that it takes into account the weak chemical interaction of sample atoms and the ion beam atoms  and the formation of implanted gallium precipitates in irradiated silicon carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. R. Menzel, T. Bachmann, F. Machalett, et al., Appl. Surf. Sci. 136, 1 (1998). https://doi.org/10.1016/S0169-4332(98)00333-X

    Article  ADS  Google Scholar 

  2. Y. Yang, S. Taylor, H. Alshehri, and L. Wang, Appl. Phys. Lett. 111, 051904 (2017). https://doi.org/10.1063/1.4996865

    Article  ADS  Google Scholar 

  3. T. Tsvetkova, S. Takahashi, A. Zayats, et al., Vacuum 79, 100 (2005). https://doi.org/10.1016/j.vacuum.2005.02.001

    Article  ADS  Google Scholar 

  4. W. Wesch, A. Heft, R. Menzel, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 148, 545 (1999). https://doi.org/10.1016/S0168-583X(98)00826-X

    Article  Google Scholar 

  5. J. Gierak, Nanofabrication 1, 35 (2014). https://doi.org/10.2478/nanofab-2014-0004

    Article  Google Scholar 

  6. F. Stumpf, A. A. Abu Quba, P. Singer, et al., J. Appl. Phys. 123, 125104 (2018). https://doi.org/10.1063/1.5022558

    Article  ADS  Google Scholar 

  7. S. K. P. Veerapandian, S. Beuer, M. Rumler, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 365, 44 (2015). https://doi.org/10.1016/j.nimb.2015.07.079

    Article  Google Scholar 

  8. B. J. Cowen and M. S. El-Genk, Comput. Mater. Sci. 151, 73 (2018). https://doi.org/10.1016/j.commatsci.2018.04.063

    Article  Google Scholar 

  9. K. Nordlund, J. Nucl. Mater. 520, 273 (2019). https://doi.org/10.1016/j.jnucmat.2019.04.028

    Article  ADS  Google Scholar 

  10. R. Menzel, T. Bachmann, W. Wesch, and H. Hobert, J. Vacuum Sci. Technol. B 16, 540 (1998). https://doi.org/10.1116/1.589859

    Article  ADS  Google Scholar 

  11. H. Plank and W. Eckstein, Nucl. Instrum. Methods Phys. Res., Sect. B 124, 23 (1997). https://doi.org/10.1016/S0168-583X(97)00113-4

    Article  Google Scholar 

  12. R. Kosiba and G. Ecke, Nucl. Instrum. Methods Phys. Res., Sect. B 187, 36 (2002). https://doi.org/10.1016/S0168-583X(01)00848-5

    Article  Google Scholar 

  13. R. Kosiba, G. Ecke, O. Ambacher, and M. Menyhard, Rad. Eff. Def. Solids 158, 721 (2003). https://doi.org/10.1080/10420150310001599180

    Article  Google Scholar 

  14. G. Ecke, R. Kosiba, V. Kharlamov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 196, 39 (2002). https://doi.org/10.1016/S0168-583X(02)01273-9

    Article  Google Scholar 

  15. H. Hofsäss and A. Stegmaier, Nucl. Instrum. Methods Phys. Res., Sect. B 517, 49 (2022). https://doi.org/10.1016/j.nimb.2022.02.012

    Article  Google Scholar 

  16. J. B. Malherbe, Crit. Rev. Solid State Mater. Sci. 19 (2), 55 (1994). https://doi.org/10.1080/10408439408244588

    Article  ADS  Google Scholar 

  17. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, MRS Bull. 32, 400 (2007). https://doi.org/10.1557/mrs2007.63

    Article  Google Scholar 

  18. J. Huang, M. Loeffler, U. Muehle, et al., Ultramicroscopy 184, 52 (2018). https://doi.org/10.1016/j.ultramic.2017.10.011

    Article  Google Scholar 

  19. A. V. Rumyantsev, N. I. Borgardt, A. S. Prikhodko, and Yu. A. Chaplygin, Appl. Surf. Sci. 540, 148278 (2021). https://doi.org/10.1016/j.apsusc.2020.148278

    Article  Google Scholar 

  20. A. V. Rumyantsev, N. I. Borgardt, and R. L. Volkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 607 (2018). https://doi.org/10.1134/S1027451018030345

    Article  Google Scholar 

  21. A. Mutzke, R. Schneider, W. Eckstein, et al., SDTrimSP Version 5.05 (IPP, Garching, 2015).

    Google Scholar 

  22. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-73513-4

  23. N. I. Borgardt, A. V. Rumyantsev, R. L. Volkov, and Yu. A. Chaplygin, Mater. Res. Express 5, 025905 (2018). https://doi.org/10.1088/2053-1591/aaace1

    Article  ADS  Google Scholar 

  24. W. Jiang, Y. Zhang, M. H. Engelhard, et al., J. Appl. Phys. 101, 023524 (2007). https://doi.org/10.1063/1.2431941

    Article  ADS  Google Scholar 

  25. N. Hansen, in Towards a New Evolutionary Computation, Ed. by J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea (Springer, Berlin, 2006), p. 75. https://doi.org/10.1007/3-540-32494-1_4

Download references

ACKNOWLEDGMENTS

We would like to thank M. Rommel, the Fraunhofer Institute for Integrated Systems and Device Technology IISB for providing the silicon carbide samples irradiated by gallium ions.

Funding

This study was supported by the Russian Science Foundation, project no. 21-79-00197 and carried out on equipment of the Center for Collective Use “Diagnostics and Modification of Microstructures and Nanoobjects.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rumyantsev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, A.V., Podorozhniy, O.V., Volkov, R.L. et al. Simulation of Silicon Carbide Sputtering by a Focused Gallium Ion Beam. Semiconductors 56, 487–492 (2022). https://doi.org/10.1134/S1063782622130085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622130085

Keywords:

Navigation