Skip to main content
Log in

Electrically Conductive Carbon-Nanotube Framework Materials

  • ELECTRONICS MATERIALS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Conductive materials based on carbon and its modifications are most promising for creating biointerfaces. Such materials can be used for the targeted stimulation of cells and tissues with a high spatial resolution. It is proposed to apply carbon nanotubes, which possess unique electrical, mechanical, and optical characteristics, to design conductive materials. It is shown that welding with the formation of branched networks on a silicon substrate and within a biopolymer matrix can be implemented under laser action. Due to experimental studies the radiation energy density at which bonding between single-walled nanotubes occurs is found to be 0.061 J/cm2. The mechanism of the formation of porous materials based on biopolymers of albumin, collagen and chitosan, containing single-walled carbon nanotubes, is determined. Materials are prepared from single-walled carbon nanotubes and biopolymers with a controlled pore size. The pore volume turns out to be more than 60% of the nanocomposite volume. The materials formed may have various forms to produce independent implantable structures or coatings for implanted devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. S. K. Rastogi, A. Kalmykov, N. Johnson, and T. Cohen-Karni, J. Mater. Chem. B 6, 7159 (2018). https://doi.org/10.1039/C8TB01600C

    Article  Google Scholar 

  2. A. Takakura, K. Beppu, T. Nishihara, et al., Nat. Commun. 10, 3040 (2019). https://doi.org/10.1038/s41467-019-10959-7

    Article  ADS  Google Scholar 

  3. A. Vashist, A. Kaushik, At. Vashist, et al., Adv. Healthcare Mater. 7, 1701213 (2018). https://doi.org/10.1002/adhm.201701213

    Article  Google Scholar 

  4. Y.-T. Liu, T.-T. Yao, W.-S. Zhang, and G.-P. Wu, Mater. Lett. 236, 244 (2019). https://doi.org/10.1016/j.matlet.2018.09.161

    Article  Google Scholar 

  5. Z. Ozturk, C. Baykasoglu, A. T. Celebi, et al., Int. J. Hydrogen Energy 40, 403 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.148

    Article  Google Scholar 

  6. N. M. Piper, Y. Fu, J. Tao, et al., Chem. Phys. Lett. 502, 231 (2011). https://doi.org/10.1016/j.cplett.2010.12.068

    Article  ADS  Google Scholar 

  7. A. Yu. Gerasimenko, U. E. Kurilova, M. S. Savelyev, et al., Compos. Struct. 260, 113517 (2021). https://doi.org/10.1016/j.compstruct.2020.113517

    Article  Google Scholar 

  8. A. Markov, R. Wördenweber, L. P. Ichkitidze, et al., Nanomaterials 10, 2492 (2020). https://doi.org/10.3390/nano10122492

    Article  Google Scholar 

  9. J. Song, B. Winkeljann, and O. Lieleg, Adv. Mater. Interfaces 7, 2000850 (2020). https://doi.org/10.1002/admi.202000850

    Article  Google Scholar 

  10. C. Huang, R. Chen, Q. Ke, et al., Colloids Surf., B 82, 307 (2011). https://doi.org/10.1016/j.colsurfb.2010.09.002

    Article  Google Scholar 

  11. M. E. I. Badawy and E. I. Rabea, Int. J. Carbohydr. Chem. 2011, 460381 (2011). https://doi.org/10.1155/2011/460381

    Article  Google Scholar 

  12. Y. Yuan and J. Chen, Nanomaterials 6 (3), 36 (2016). https://doi.org/10.3390/nano6030036

    Article  Google Scholar 

  13. A. Yu. Gerasimenko, U. E. Kurilova, I. A. Suetina, et al., Appl. Sci. 11, 8036 (2021). https://doi.org/10.3390/app11178036

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 21-19-00226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuksin.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuksin, A.V., Glukhova, O.E. & Gerasimenko, A.Y. Electrically Conductive Carbon-Nanotube Framework Materials. Semiconductors 56, 422–426 (2022). https://doi.org/10.1134/S106378262213005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262213005X

Keywords:

Navigation