Skip to main content
Log in

Investigation of the Chemical Composition of Films Deposited by the Electric-Arc Sputtering of Graphite and Titanium from Two Sources

  • ELECTRONICS MATERIALS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Carbon films with acceptable emission properties and satisfactory adhesion to a substrate are promising material for making cold cathodes. It is known that inclusions of metallic elements (chromium, titanium, etc.) in a carbon film improve its adhesion to the substrate. One of the methods for producing coatings based on carbon and titanium is the electric-arc sputtering of a Ti/C composite cathode in an argon atmosphere. It should be noted that carbon microparticles in the total plasma flow are the source of structural defects in the growing film. The magnetic separation of carbon plasma solves the above problem. In this study, composite metal–carbon films are obtained by the simultaneous electric-arc sputtering of graphite and titanium in a magnetic field from two evaporators. The composition of the films is studied by Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS). It is established that the samples obtained are composite films consisting of graphite nanoparticles, Ti14C13 or Ti8C12 nanoclusters, titanium oxides, and titanium-carbide TiCxN1 – x compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. R. A. Andrievskii, Russ. Chem. Rev. 66, 53 (1997). https://doi.org/10.1070/RC1997v066n01ABEH000290

    Article  ADS  Google Scholar 

  2. M. V. Kuznetsov, S. V. Borisov, O. P. Shepatkovskii, Yu. G. Veksler, and V. L. Kozhevnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 331 (2009). https://doi.org/10.1134/S102745100903001X

    Article  Google Scholar 

  3. E. Z. Khamdohov, Z. M. Khamdohov, V. S. Kulikauskas, P. N. Chernikh, S. V. Serushkin, and E. S. Migunova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1297 (2014). https://doi.org/10.1134/S1027451014060305

    Article  Google Scholar 

  4. E. Z. Khamdokhov, Z. M. Khamdokhov, A. Z. Khamdokhov, et al., Izv. Kab.-Balk. Nauch. Tsentra RAN, No. 5 (67), 18 (2015).

    Google Scholar 

  5. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  ADS  Google Scholar 

  6. NIST Standard Reference Database 20, Version 4.1, National Institute of Standards and Technology, U. S. Department of Commerce. https://srdata.nist.gov/xps/. Accessed September 29, 2021.

  7. M. Lu, N. Cheng, and Y. Yang, Electrochim. Acta 53, 3539 (2008). https://doi.org/10.1016/j.electacta.2007.09.062

    Article  Google Scholar 

  8. Y. Zhu, Sh. Murali, M. D. Stoller, et al., Carbon 48, 2118 (2010). https://doi.org/10.1016/j.carbon.2010.02.001

    Article  Google Scholar 

  9. C. Ocal and S. Ferrer, J. Chem. Phys. 84, 6474 (1986). https://doi.org/10.1063/1.450743

    Article  ADS  Google Scholar 

  10. T. Kocourek, M. Jelinek, J. Kadlec, et al., Plasma Process. Polym. 4, S651 (2007). https://doi.org/10.1002/ppap.200731603

    Article  Google Scholar 

  11. P. Mi, J. He, Y. Qin, and K. Chen, Surf. Coat. Technol. 309, 1 (2016). https://doi.org/10.1016/j.surfcoat.2016.11.033

    Article  Google Scholar 

  12. I. Bertóti, Surf. Coat. Technol. 151–152, 194 (2002). https://doi.org/10.1016/S0257-8972(01)01619-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Khamdokhov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamdokhov, Z.M., Margushev, Z.C., Kalazhokov, Z.K. et al. Investigation of the Chemical Composition of Films Deposited by the Electric-Arc Sputtering of Graphite and Titanium from Two Sources. Semiconductors 56, 411–415 (2022). https://doi.org/10.1134/S1063782622130048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622130048

Keywords:

Navigation