Skip to main content
Log in

Electrophoretic Deposition of a Composite Electrode Material of a Supercapacitor Based on Few-Layer Graphite Nanoflakes and Ni(OH)2

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Currently, there is a growing demand for miniaturized power supplies, including planar supercapacitors, whose principle of operation is based on fast redox reactions. This circumstance stimulates investigations of composite structures made of high-surface-area carbon-based materials and transition-metal compounds. In this paper, we report the results of studying coatings based on few-layer graphite nanoflakes FLGN/Ni(OH)2 and their oxidized form OFLGN/Ni(OH)2, obtained by repeated electrophoretic deposition. These coatings are used in prototype parallel-plate (3D) and planar supercapacitors. A processing route using a 450-nm laser for pattern scribing is developed for the latter. It is shown that, by regulating the nickel-ion-source proportion in the suspension from 0.04 to 0.64 g/L, one can control the physical properties of the composite at the deposition stage. The composite’s physical properties are studied by cyclic voltammetry, scanning microscopy, and elemental analysis. The peak capacity values are obtained for samples with the minimum concentration (0.04 g/L); they turn out to be 1.51 and 1.31 F/g for the FLGN-containing samples and 1.86 and 1.29 F/g for the OFLGN-containing samples of bulk and planar supercapacitors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. F. Bu, W. Zhou, Y. Xu, et al., npj Flex. Electron. 4, 31 (2020). https://doi.org/10.1038/s41528-020-00093-6

    Article  Google Scholar 

  2. Y. Liu, Z. Zeng, and J. Wei, Front. Nanosci. Nanotechnol. 2 (2), 78 (2016). https://doi.org/10.15761/FNN.1000113

    Article  Google Scholar 

  3. A.-L. Brisse, Ph. Stevens, G. Toussaint, et al., Materials 11, 1178 (2018). https://doi.org/10.3390/ma11071178

    Article  ADS  Google Scholar 

  4. R. Dubey and V. Guruviah, Ionics 25, 1419 (2019). https://doi.org/10.1007/s11581-019-02874-0

    Article  Google Scholar 

  5. S. A. Chernyak, A. M. Podgornova, E. A. Arkhipova, et al., Appl. Surf. Sci. 439, 371 (2018). https://doi.org/10.1016/j.apsusc.2018.01.059

    Article  ADS  Google Scholar 

  6. E. A. Arkhipova, A. S. Ivanov, S. V. Savilov, et al., Funct. Mater. Lett. 11, 1840005 (2018). https://doi.org/10.1142/S1793604718400052

    Article  ADS  Google Scholar 

  7. Y. Liu, B. Zhang, Q. Xu, et al., Adv. Funct. Mater. 28, 1706592 (2018). https://doi.org/10.1002/adfm.201706592

    Article  Google Scholar 

  8. J. Pu, X. Wang, T. Zhang, et al., Nanotecnology 27, 045701 (2016). https://doi.org/10.1088/0957-4484/27/4/045701

    Article  ADS  Google Scholar 

  9. J. Maeng, Y.-J. Kim, C. Meng, and P. P. Irazoqui, ACS Appl. Mater. Interfaces 8, 13458 (2016). https://doi.org/10.1021/acsami.6b03559

    Article  Google Scholar 

  10. W. Liu, C. Lu, X. Wang, et al., ACS Nano 9, 1528 (2015). https://doi.org/10.1021/nn5060442

    Article  Google Scholar 

  11. S. Kwon, Y. Yoon, J. Ahn, et al., Carbon 137, 136 (2018). https://doi.org/10.1016/j.carbon.2018.05.031

    Article  Google Scholar 

  12. C. J. Raj, B. C. Kim, W.-J. Cho, et al., ACS Appl. Mater. Interfaces 7, 13405 (2015). https://doi.org/10.1021/acsami.5b02070

    Article  Google Scholar 

  13. B. D. Boruah, A. Maji, and A. Misra, ACS Appl. Mater. Interfaces 10, 15864 (2018). https://doi.org/10.1021/acsami.8b02660

    Article  Google Scholar 

  14. Xin Wang, Xian Wang, W. Huang, et al., J. Power Sources 140, 211 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.033

    Article  ADS  Google Scholar 

  15. D. Qi, Z. Liu, Y. Liu, et al., Adv. Mater. 27, 5559 (2015). https://doi.org/10.1002/adma.201502549

    Article  Google Scholar 

  16. X. Mao, J. Xu, X. He, et al., Appl. Surf. Sci. 435, 1228 (2018). https://doi.org/10.1016/j.apsusc.2017.11.248

    Article  ADS  Google Scholar 

  17. L. Sun, X. Wang, W. Liu, et al., J. Power Sources 315, 1 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.019

    Article  ADS  Google Scholar 

  18. A. Alekseyev, E. Lebedev, D. Gromov, and R. Ryazanov, in Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (IEEE, St. Petersburg, 2019), Vol. 1, p. 1965. https://doi.org/10.1109/EIConRus.2019.8657117

  19. Y. Wang, Y. Zhao, and L. Qu, J. Energy Chem. 59, 642 (2021). https://doi.org/10.1016/j.jechem.2020.12.002

    Article  Google Scholar 

  20. D. N. Stolbov, N. V. Usol’tseva, S. A. Chernyak, et al., in Proceedings of the Conference on Russian University in an Unstable World: Global Challenges and National Responses (Ivan. Gos. Univ., Ivanovo, 2019), Part 2, p. 24.

  21. L. Feng, Y. Zhu, H. Ding, and Ch. Ni, J. Power Sources 267, 430 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.092

    Article  ADS  Google Scholar 

  22. Y. Wang, B. Shang, F. Lin, et al., Chem. Commun. 54, 559 (2018). https://doi.org/10.1039/C7CC08879E

    Article  Google Scholar 

  23. Y. Wang, Y. Song, and Y. Xia, Chem. Soc. Rev. 45, 5925 (2016). https://doi.org/10.1039/C5CS00580A

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-38-90245, and performed within the State assignment for 2020–2022 (agreement FSMR-2020-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alekseyev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseyev, A.V., Kakovkina, Y.I., Kuzmin, D.A. et al. Electrophoretic Deposition of a Composite Electrode Material of a Supercapacitor Based on Few-Layer Graphite Nanoflakes and Ni(OH)2. Semiconductors 56, 462–471 (2022). https://doi.org/10.1134/S1063782622130036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622130036

Keywords:

Navigation