Skip to main content
Log in

Ion Doping of Silicon Carbide in the Technology of High-Power Electronic Devices (Review)

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Ion implantation is a key technology without alternative for doping silicon carbide SiC in the manufacturing processes of SiC devices. SiC technology has a number of distinctive features in comparison with Si-ion doping technology. This paper provides a systematic analysis of modern technical solutions aimed at the formation of local doped regions by the method of ion implantation for various purposes for SiC-based high-power electronic devices. The results of research conducted at the St. Petersburg State Electrotechnical University LETI are presented. This research is focused on the development and selection of modes of aluminum- and phosphorus-ion implantation into 4H-SiC structures that provide specified concentrations of doping impurities and geometric dimensions of local ion-doped regions. The developed ion-implantation modes are successfully implemented in the manufacture of samples of high-power 4H-SiC metal–insulator–semiconductor (MIS) transistors with operating voltages of up to 1200 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

REFERENCES

  1. V. V. Luchinin, Nano-Mikrosist. Tekh. 18, 259 (2016).

    Google Scholar 

  2. C.-M. Zetterling, MRS Bull. 40, 431 (2015). https://doi.org/10.1557/mrs.2015.90

    Article  ADS  Google Scholar 

  3. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, Singapore, 2014). https://doi.org/10.1002/9781118313534

  4. V. S. Vainer and V. A. Il’in, Sov. Phys. Solid State 23, 2126 (1981).

    Google Scholar 

  5. A. I. Veinger, V. A. Il’in, Yu. M. Tairov, and V. F. Tsvetkov, Sov. Phys. Semicond. 15, 902 (1981).

    Google Scholar 

  6. S. E. Saddow and A. Agarwal, Advances in Silicon Carbide Processing and Applications (Artech House, Boston, MA, 2004).

    Google Scholar 

  7. A. Hallén and M. Linnarsson, Surf. Coat. Technol. 306, 190 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.075

    Article  Google Scholar 

  8. A. Reshanov and W. Schöner, ECS Trans. 64, 289 (2014). https://doi.org/10.1149/06407.0289ecst

    Article  Google Scholar 

  9. A. V. Afanas’ev, V. A. Il’in, V. V. Luchinin, and S. A. Reshanov, Izv. Vyssh. Uchebn. Zaved., Ser. Elektron. 25, 483 (2020). https://doi.org/10.24151/1561-5405-2020-25-6-483-496

    Article  Google Scholar 

  10. M. Bockstedte, A. Mattausch, and O. Pankratov, Appl. Phys. Lett. 85, 58 (2004). https://doi.org/10.1063/1.1769075

    Article  ADS  Google Scholar 

  11. A. A. Lebedev, Semiconductors 33, 107 (1999).

    Article  ADS  Google Scholar 

  12. I. I. Parfenova, S. A. Reshanov, and V. P. Rastegaev, Inorg. Mater. 38, 476 (2002). https://doi.org/10.1023/A:1015471021894

    Article  Google Scholar 

  13. I. G. Ivanov, A. Henry, and E. Janzén, Phys. Rev. B 71, 241201 (2005). https://doi.org/10.1103/PhysRevB.71.241201

    Article  ADS  Google Scholar 

  14. T. Kimoto, O. Takemura, H. Matsunami, et al., J. Electron. Mater. 27, 358 (1998). https://doi.org/10.1007/s11664-998-0415-6

    Article  ADS  Google Scholar 

  15. Y. Negoro, T. Kimoto, and H. Matsunami, J. Appl. Phys. 98, 043709 (2005). https://doi.org/10.1063/1.2030411

    Article  ADS  Google Scholar 

  16. P. A. Ivanov, I. V. Grekhov, N. D. Il’inskaya, O. I. Kon’kov, A. S. Potapov, T. P. Samsonova, and O. U. Serebrennikova, Semiconductors 45, 668 (2011).

    Article  ADS  Google Scholar 

  17. M. S. Janson, M. K. Linnarsson, A. Hallen, and B. G. Svensson, J. Appl. Phys. 93, 8903 (2003). https://doi.org/10.1063/1.1569666

    Article  ADS  Google Scholar 

  18. J. Lindhard, Mat.-Fys. Medd. 34 (14), 1 (1965).

    Google Scholar 

  19. A. Hallén, M. K. Linnarsson, and L. Vines, Mater. Sci. Forum 963, 375 (2019). https://doi.org/10.4028/www.scientific.net/msf.963.375

    Article  Google Scholar 

  20. V. S. Vavilov and A. R. Chelyadinskii, Phys. Usp. 38, 333 (1995). https://doi.org/10.1070/PU1995v038n03ABEH000079

    Article  ADS  Google Scholar 

  21. E. Brown and M. Downey, Solid-State Electron. 39, 1531 (1996). https://doi.org/10.1016/0038-1101(96)00079-2

    Article  ADS  Google Scholar 

  22. J. F. Ziegler, The Stopping and Range of Ions in Matter Software, SRIM. http://www.srim.org/SRIM/. Accessed April 12, 2022.

  23. A. V. Afanas’ev, V. A. Il’in, I. G. Kazarin, and A. A. Petrov, Tech. Phys. 46, 584 (2001).

    Article  Google Scholar 

  24. Y. Zhang, W. J. Weber, W. Jiang, et al., Mater. Sci. Forum 389–393, 815 (2002). www.scientific.net/msf.389-393.815.

    Article  Google Scholar 

  25. Y. Negoro, N. Miyamoto, T. Kimoto, and H. Matsunami, Appl. Phys. Lett. 80, 240 (2002). https://doi.org/10.1063/1.1432745

    Article  ADS  Google Scholar 

  26. M. K. Linnarsson, A. Hallen, and L. Vines, Mater. Sci. Forum 1004, 689 (2020). www.scientific.net/msf.1004.689.

    Article  Google Scholar 

  27. F. Roccaforte, P. Fiorenza, M. Vivona, et al., Materials 14, 3923 (2021). https://doi.org/10.3390/ma14143923

    Article  ADS  Google Scholar 

  28. T. Aichinger, P. M. Lenahan, B. R. Tuttle, and D. Peters, Appl. Phys. Lett. 100, 112113 (2012). https://doi.org/10.1063/1.3695330

    Article  ADS  Google Scholar 

  29. S. E. Saddow, J. R. Williams, T. Isaacs-Smith, et al., Mater. Sci. Forum 338–342, 901 (2000). https://doi.org/10.4028/www.scientific.net/MSF.338-342.901

    Article  Google Scholar 

  30. M. Rambach, A. J. Bauer, and H. Ryssel, Phys. Status Solidi B 245, 1315 (2008). https://doi.org/10.1002/pssb.200743510

    Article  ADS  Google Scholar 

  31. M. H. Weng, F. Roccaforte, F. Giannazzo, et al., Solid State Phenom. 156–158, 493 (2010). https://doi.org/10.4028/www.scientific.net/SSP.156-158.493

    Article  Google Scholar 

  32. Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, Mater. Sci. Forum 457–460, 933 (2004). https://doi.org/10.4028/www.scientific.net/MSF.457-460.933

    Article  Google Scholar 

  33. K. V. Vassilevski, N. G. Wright, I. P. Nikitina, et al., Semicond. Sci. Technol. 20, 271 (2005). https://doi.org/10.1088/0268-1242/20/3/003

    Article  ADS  Google Scholar 

  34. A. Frazzetto, F. Giannazzo, R. Lo Nigro, et al., J. Phys. D: Appl. Phys. 44, 255302 (2011). https://doi.org/10.1088/0022-3727/44/25/255302

    Article  ADS  Google Scholar 

  35. Y. Kagawa, N. Fujiwara, K. Sugawara, et al., Mater. Sci. Forum 778–780, 919 (2014). https://doi.org/10.4028/www.scientific.net/MSF.778-780.919

    Article  Google Scholar 

  36. H. Yoshioka, J. Senzaki, A. Shimozato, et al., Appl. Phys. Lett. 104, 083516 (2014). https://doi.org/10.1063/1.4866790

    Article  ADS  Google Scholar 

  37. T. Kimoto, Y. Kanzaki, M. Noborio, et al., Jpn. J. Appl. Phys. 44 (3R), 1213 (2005). https://doi.org/10.1143/JJAP.44.1213

    Article  ADS  Google Scholar 

  38. B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer US, Boston, 2008). https://doi.org/10.1007/978-0-387-47314-7

  39. A. V. Afanas’ev, V. A. Il’in, V. V. Luchinin, et al., Nano-Mikrosist. Tekh. 18, 308 (2016).

    Google Scholar 

  40. T. Mochizuki and T. Someya, IEEE Trans. Electron Dev. 55, 1997 (2008). https://doi.org/10.1109/TED.2008.926631

    Article  ADS  Google Scholar 

  41. A. V. Afanas’ev, V. A. Golubkov, V. A. Il’in, et al., Izv. SPbGETU LETI, No. 6, 72 (2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to М.V. Chetvergov and K.А. Karabeshkin for carrying out ion-implantation processes on the HVEE-500 implanter and to А.I. Mikhailov for performing the SRIM modeling and participation in discussions of the results.

Funding

This study was supported by the Ministry of Education  and Science of the Russian Federation, project no. 03.G25.31.0243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Afanasev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasev, A.V., Ilyin, V.A. & Luchinin, V.V. Ion Doping of Silicon Carbide in the Technology of High-Power Electronic Devices (Review). Semiconductors 56, 472–486 (2022). https://doi.org/10.1134/S1063782622130024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622130024

Keywords:

Navigation