Skip to main content
Log in

The Effect of Synthesis and Heat Treatment Modes on the Local Structure of a Ge2Sb2Te5 Chalcogenide Semiconductor

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Features of amorphous state‒crystal phase transitions have been studied by X-ray diffractometry and Raman spectroscopy in their dependence on methods for obtaining Ge20Sb20.5Te51 chalcogenide semiconductor samples and their heat treatment, as well as changes in their structure and short-range atomic order. It is shown that the Ge20Sb20.5Te51 films synthesized by thermal evaporation on an unheated substrate are amorphous, while after heat treatment at 220 and 400°C they transform into the crystalline phase with a cubic and hexagonal structure. The chemical bonds and basic structural elements that form the matrix of the investigated objects have been established and the changes occurring in them during heat treatment have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. T. Kolomies and N. A. Goryunova, Zh. Tekh. Fiz. 25, 984 (1955).

    Google Scholar 

  2. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  3. W. Welnic and M. Wuttig, Mater. Today 11 (6), 20 (2008).

    Article  Google Scholar 

  4. D. Lencer, M. Salinga, and M. Wuttig, Adv. Mater. 23, 2030 (2011).

    Article  Google Scholar 

  5. S. N. Garibova, A. I. Isaev, S. I. Mekhtieva, and S. U. Ataeva, Semiconductors 53, 1507 (2019).

    Article  ADS  Google Scholar 

  6. S. U. Ataeva, S. I. Mekhtieva, A. I. Isaev, S. N. Garibova, and A. S. Huseynova, Semiconductors 53, 1637 (2019).

    Article  ADS  Google Scholar 

  7. V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, Appl. Phys. 116, 054913 (2014).

    Article  Google Scholar 

  8. X. Zemin, C. Chaonan, W. Zhewei, W. Ke, C. Haining, and Y. Hui, RSC Adv. 8, 21040 (2018).

  9. Zhang Ting, Liu Bo, Xia Ji-Lin, Song Zhi-Tang, Feng Song-Lin, and Chen Bomy, Chin. Phys. Lett. 21, 741 (2004).

    Article  ADS  Google Scholar 

  10. A. L. Lacaita, Solid State Electron. 50, 24 (2006).

    Article  ADS  Google Scholar 

  11. K. Shportko, L. Revutska, O. Paiuk, J. Baran, A. Stronski, A. Gubanova, and E. Venger, Opt. Mater. 73, 489 (2015).

    Article  ADS  Google Scholar 

  12. B. Liu, Z. Song T. Zhang, S. Feng, and B. Chen, Chin. Phys. 13, 1947 (2004).

    Article  Google Scholar 

  13. E. Cho, S. Yoon, H. R. Yoon, and W. Jo, J. Korean Phys. Soc. 48, 1616 (2006).

    Google Scholar 

  14. V. Bragaglia, K. Holldack, et al., Sci. Rep. 6, 28560 (2016).

    Article  ADS  Google Scholar 

  15. G. G. Sosso, S. Caravati, R. Mazzarello, and M. Bernasconi, Phys. Rev. B 83, 134201 (2011).

    Article  ADS  Google Scholar 

  16. S. A. Kozyukhin, V. H. Kudoyarova, H. P. Nguyen, et al., Phys. Status Solidi C 8, 2688 (2011).

    Article  ADS  Google Scholar 

  17. G. Bulai, O. Pompilian, et al., Nanomaterials 9, 676 (2019).

    Article  Google Scholar 

  18. P. Nemec, V. Nazabal, A. Moreac, J. Gutwirth, L. Benes, and M. Frumar, Mater. Chem. Phys. 136, 935 (2012).

    Article  Google Scholar 

  19. J. Tominaga and N. Atoda, Jpn. J. Appl. Phys. 38, L322 (1999).

    Article  ADS  Google Scholar 

  20. S. Kozyukhin, M. Veres, H. P. Nguyen, A. Ingram, and V. Kudoyarova, Phys. Proc. 44, 82 (2013).

    Article  ADS  Google Scholar 

  21. K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, J. Phys.: Condens. Matter 18 (2006).

  22. G. Lucovsky, D. A. Baker, M. A. Paesler, and J. C. Phillips, J. Non-Cryst. Solids 353, 1713 (2007).

    Article  ADS  Google Scholar 

  23. S. Sugai, Phys. Rev. B 35, 1345 (1987).

    Article  ADS  Google Scholar 

  24. J. Koblar, B. Arlin, and G. Shau, Phys. Rev. B 60, R14985 (1999).

    Article  Google Scholar 

  25. E. Yalon, S. Deshmukh, et al., Sci. Rep. 7, 15360 (2017).

    Article  ADS  Google Scholar 

  26. K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, J. Phys.: Condens. Matter 18, 965 (2006).

    ADS  Google Scholar 

  27. P. Nemec, A. Moreac, V. Nazabal, M. Pavlišta, J. Prikryl, and M. Frumar, J. Appl. Phys. 106, 103509 (2009).

    Article  ADS  Google Scholar 

  28. H. R. Yoo, W. Jo, E. Cho, S. Yoon, and M. Kim, J. Non-Cryst. Solids 352, 3757 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out at the Institute of Physics of the Azerbaijan National Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Garibova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garibova, S.N., Isaev, A.I., Mekhtieva, S.I. et al. The Effect of Synthesis and Heat Treatment Modes on the Local Structure of a Ge2Sb2Te5 Chalcogenide Semiconductor. Semiconductors 56, 175–179 (2022). https://doi.org/10.1134/S1063782622020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622020063

Keywords:

Navigation