Skip to main content
Log in

Electron-Microscopy Studies of the Structure of Thin Epitaxial Ge2Sb2Te5 Layers Grown on Si(111) Substrates

  • ELECTRONICS MATERIALS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

For the creation of memory cells of new generation, structurally perfect epitaxial Ge2Sb2Te5 (GST) layers and multilayered crystalline structures based on GeTe/Sb2Te3 superlattices grown on Si substrates are of interest. This initiates the studies of specific features of formation of such materials by various methods, including molecular-beam epitaxy. In this study, the structure of a thin (13-nm-thick) epitaxial GST layer to be used for the production of phase-change memory cells is investigated. The layers are grown by molecular-beam epitaxy on Sb-passivated Si(111) substrates. The studies are conducted by transmission electron microscopy and electron diffraction analysis of cross- and planar-section samples. The high resolution images of cross-section samples and the diffraction patterns for planar-section thin foils and their bright-field micrographs are obtained. It is found that the layer is composed of structurally perfect crystalline grains consisting mainly of the hexagonal phase and, in some local regions, of the ordered GST cubic phase, whose basal planes are parallel to the substrate surface. From the quantitative analysis of the moiré pattern appearing in bright-field electron-microscopy images, it is established that the grains, for which the GST(\(11\bar {2}0\)) and Si(220) planes are rotated with respect to each other about the growth direction through up to 2°, occupy about 60% of the surface area of the epitaxial layer and 26% of the area is accounted for practically nonrotated grains. The fraction of the area occupied by grains misoriented with respect to the substrate by angles from 2° to 8° is close to 33%, and the grains occupying about 7% of the layer area are rotated through angles larger than 8°. The average angle of rotation angle is about 2.6°. The estimated average dimension of nonrotated grains is about 150 nm and decreases with increasing angle of rotation relative to the substrate. The experimentally established systematic features of the grain structure of the epitaxial GST layer suggest that the Si(111) substrate has an orienting effect upon the formation of the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Redaelli, Phase Change Memory: Device Physics, Reliability and Applications (Springer Int., Cham, 2018). https://doi.org/10.1007/978-3-319-69053-7

  2. A. Lotnyk, M. Behrens, and B. Rauschenbach, Nanoscale Adv. 1, 3836 (2019). https://doi.org/10.1039/C9NA00366E

    Article  ADS  Google Scholar 

  3. R. E. Simpson, P. Fons, A. V. Kolobov, et al., Nat. Nanotechnol. 6, 501 (2011). https://doi.org/10.1038/nnano.2011.96

    Article  ADS  Google Scholar 

  4. J. E. Boschker and R. Calarco, Adv. Phys. X 2, 675 (2017). https://doi.org/10.1080/23746149.2017.1346483

    Article  Google Scholar 

  5. A. Lotnyk, T. Dankwort, I. Hilmi, et al., Nanoscale 11, 10838 (2019). https://doi.org/10.1039/C9NR02112D

    Article  Google Scholar 

  6. H. B. Elswijk, D. Dijkkamp, and E. J. van Loenen, Phys. Rev. B 44, 3802 (1991). https://doi.org/10.1103/PhysRevB.44.3802

    Article  ADS  Google Scholar 

  7. J. Momand, J. E. Boschker, R. Wang, et al., CrystEngComm. 20, 340 (2018). https://doi.org/10.1039/C7CE01825H

    Article  Google Scholar 

  8. R. Wang, J. E. Boschker, E. Bruyer, et al., J. Phys. Chem. C 118, 29724 (2014). https://doi.org/10.1021/jp507183f

    Article  Google Scholar 

  9. J. E. Boschker, J. Momand, V. Bragaglia, et al., Nano Lett. 14, 3534 (2014). https://doi.org/10.1021/nl5011492

    Article  ADS  Google Scholar 

  10. I. Hilmi, E. Thelnader, P. Schumacher, et al., Thin Solid Films 619, 81 (2016). https://doi.org/10.1016/j.tsf.2016.10.028

    Article  ADS  Google Scholar 

  11. T. Nakaoka, H. Satoh, S. Honjo, and H. Takeuchi, AIP Adv. 2, 042189 (2012). https://doi.org/10.1063/1.4773329

    Article  ADS  Google Scholar 

  12. M. Bouška, S. Pechev, Q. Simon, et al., Sci. Rep. 6, 26552 (2016). https://doi.org/10.1038/srep26552

    Article  ADS  Google Scholar 

  13. E. Zallo, S. Cecchi, J. E. Boschker, et al., Sci. Rep. 8 (1), 1 (2018).

    Article  Google Scholar 

  14. I. Hilmi, A. Lotnyk, J. W. Gerlach, et al., APL Mater. 5, 050701 (2017). https://doi.org/10.1063/1.4983403

    Article  ADS  Google Scholar 

  15. G. C. Sosso, S. Caravati, R. Mazzarello, and M. Bernasconi, Phys. Rev. B 83, 134201 (2011). https://doi.org/10.1103/PhysRevB.83.134201

    Article  ADS  Google Scholar 

  16. E. Zallo, D. Dragoni, Y. Zaytseva, et al., Phys. Status Solidi (RRL) 15, 2000434 (2021). https://doi.org/10.1002/pssr.202170014

    Article  ADS  Google Scholar 

  17. I. Hilmi, A. Lotnyk, J. W. Gerlach, et al., Mater. Des. 115, 138 (2017). https://doi.org/10.1016/j.matdes.2016.11.003

    Article  Google Scholar 

  18. Y. Zheng, Y. Cheng, R. Huang, et al., Sci. Rep. 7, 5915 (2017). https://doi.org/10.1038/s41598-017-06426-2

    Article  ADS  Google Scholar 

  19. Y. Takagaki, A. Giussani, K. Perumal, et al., Phys. Rev. B 86, 125137 (2012). https://doi.org/10.1103/PhysRevB.86.125137

    Article  ADS  Google Scholar 

  20. S. Andrieu, J. Appl. Phys. 69, 1366 (1991). https://doi.org/10.1063/1.347274

    Article  ADS  Google Scholar 

  21. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, MRS Bull. 32, 400 (2007). https://doi.org/10.1557/mrs2007.63

    Article  Google Scholar 

  22. W. Zhang, A. Thiess, P. Zalden, et al., Nat. Mater. 11, 952 (2012). https://doi.org/10.1038/nmat3456

    Article  ADS  Google Scholar 

  23. STEM_CELL, (Quantum) e-Optics and TEM GROUP, CNRNANO. http://tem-s3.nano.cnr.it/?page_id=2. Accessed April 08, 2020.

  24. V. Grillo and E. Rotunno, Ultramicroscopy 125, 97 (2013). https://doi.org/10.1016/j.ultramic.2012.10.016

    Article  Google Scholar 

  25. D. B. Williams and C. B. Carter, Transmission Electron Microscopy. A Textbook for Materials Science (Springer US, New York, 2009). https://doi.org/10.1007/978-0-387-76501-3

Download references

Funding

The study was supported by the Ministry of Education and Science of the Russian Federation, subject no. АААА-А20-120071490069-9, agreement no. 075-03-2020-216, code 0719-2020-001. The study was carried out using the equipment of the Multiple-Access Center “Diagnostics and Modification of Microstructures and Nanoobjects.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Zaytseva.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytseva, Y.S., Borgardt, N.I., Prikhodko, A.S. et al. Electron-Microscopy Studies of the Structure of Thin Epitaxial Ge2Sb2Te5 Layers Grown on Si(111) Substrates. Semiconductors 55, 1033–1038 (2021). https://doi.org/10.1134/S106378262113011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262113011X

Keywords:

Navigation