Skip to main content
Log in

Temperature Dependence of the Conductivity of Tellurium Whiskers

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A comparative analysis of the electrical conductivity of whisker, epitaxial film, and single crystal of tellurium was undertaken in the 77–273 K temperature range. The electrical conductivity of the film and single crystal increases monotonically up to 200 K, after which it begins to rise steeply, corresponding to the thermal excitation of intrinsic carriers. The electrical conductivity of whiskers decreases with increasing temperature to 230 K, after which it begins to increase more gradually. It is assumed that in the case of tellurium whiskers, the classical size effect takes place: the decrease in electrical conductivity is due to diffuse scattering of carriers by the lateral surface of the crystal of tellurium and is intensified with increasing temperature. The uneven, tightly-convoluted surface of developed samples is shown in images produced in a scanning electron microscope in the nanometer range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Grosse, Die Festkörper Eigenschaften von Tellur, Springer Tracts in Modern Physics (Springer, Berlin, 1969).

    Google Scholar 

  2. I. Shih and C. H. Champness, J. Cryst. Growth 44, 492 (1978).

    Article  ADS  Google Scholar 

  3. R. V. Parfen’ev, I. I. Farbshtein, I. L. Shul’pina, S. V. Yakimov, V. P. Shalimov, and A. M. Turchaninov, Phys. Solid State 44, 1241 (2002).

    Article  ADS  Google Scholar 

  4. M. J. Capers and M. White, Thin Solid Films 8, 353 (1971).

    Article  Google Scholar 

  5. T. Hristova-Vasileva, I. Bineva, R. Todorov, A. Dinescu, and C. Romanitan, in Proceedings of the 20th International School on Condensed Matter Physics, Russia, 2019 (2019), p. 1186.

  6. M. S. Bresler, V. G. Veselago, Yu. V. Kosichkin, G. E. Pikus, I. I. Farbshtein, and S. S. Shalyt, Sov. Phys. JETP 30, 799 (1969).

    ADS  Google Scholar 

  7. S. Tutihasi, S. G. Roberts, R. S. Keeres, and R. E. Drens, Phys. Rev. 177 (3), 1143 (1969).

    Article  ADS  Google Scholar 

  8. R. Viswanathan, R. Balasubramanian, D. Darwin Albert Raj, M. Sai Baba, and T. S. Lakshmi Narasimhan, J. Alloys Compd. 603, 75 (2014).

    Article  Google Scholar 

  9. H. Zhen, Y. Yuan, L. Jian-Wei, and Y. Shu-Hong, Chem. Soc. Rev. 46, 2732 (2017).

    Article  Google Scholar 

  10. K. R. Sapkota, P. Lu, L. D. Medlin, and G. T. Wang, APL Mater. 7, 081103 (2019).

    Article  ADS  Google Scholar 

  11. P. Yuanyuan and G. Shiyuan, Li Yang, and Lu Jing, Phys. Rev. 98, 085135 (2018).

    Article  Google Scholar 

  12. Z. Zhili, C. Xiaolin, Y. Seho, C. Jinglei, D. Yawei, N. Chunyao, G. Zhengxiao, X. Maohai, L. Feng, C. Jun-Hyung, Yu Jia, and Z. Zhenyu, Phys. Rev. Lett. 119, 106101 (2017).

    Article  ADS  Google Scholar 

  13. Wu Wenzhuo, Q. Gang, W. Yixiu, W. Ruoxing, and Y. Peide, Chem. Soc. Rev. 47, 7203 (2018).

    Article  Google Scholar 

  14. W. Dawei, Y. Aijun, L. Tiansong, F. Chengyu, P. Jianbin, Liu Zhu, Chu Jifeng, Y. Huan, W. Xiaohua, R. Mingzhe, and K. Nikhil, J. Mater. Chem. A 10, 1039 (2019).

    Google Scholar 

  15. S. Chenfei, L. Yihang, W. Jiangbin, X. Chi, C. Dingzhou, L. Zhen, L. Qingzhou, L. Yuanrui, W. Yixiu, C. Xuan, K. Hiroyuki, Sh. Fuyuki, K. Aravind, K. Rajiv, N. Aiichiro, D. Priya, R. A. Vashishta, Mor, N. Ahmad, H. W. Abbas, W. Wenzhuo, and Z. Chongwu, ACS Nano 14, 303 (2020).

    Article  Google Scholar 

  16. A. M. Ismailov, I. M. Shapiev, M. Kh. Rabadanov, and I. Sh. Aliev, Tech. Phys. Lett. 41, 83 (2015).

    Article  ADS  Google Scholar 

  17. W. Xiao Ping, L. Yuan, Sh. Min Zhou, Sh. Yun Lou, Y. Qiang Wang, T. Gao, Y. Biao Liu, and X. Jing Shi, Nanopart. Res. 14, 1009 (2012).

    Article  Google Scholar 

  18. T. Il Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. Sang Kim, J. Min Myoung, and Z. Lin Wang, Adv. Mater. 25, 2920 (2013).

    Article  Google Scholar 

  19. R. W. Dutton and R. S. Muller, Proc. IEEE 59, 1511 (1971).

    Article  Google Scholar 

  20. R. V. Parfen’ev, Kogarskii, I. I. Farbshtein, and S. S. Shalyt, Sov. Phys. Solid State 3, 1820 (1961).

    Google Scholar 

  21. N. Chaudhuri, Indian J. Pure Appl. Phys. 3, 50 (1965).

    Google Scholar 

  22. J. M. Ziman, Electrons and Phonons (Oxford Univ., Oxford, 1960).

    MATH  Google Scholar 

  23. M. Green, Solid State Surface Science (Marcel Dekker, New York, 1969).

    Google Scholar 

  24. K. Fucks, Proc. Cambridge Phil. Soc. 34, 100 (1938).

    Article  ADS  Google Scholar 

  25. Yu. P. Gaidukov, Sov. Phys. Usp. 27, 256 (1984).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by RFBR project no. 18-02-00808A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rabadanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabadanov, M.R., Stepurenko, A.A., Gummetov, A.E. et al. Temperature Dependence of the Conductivity of Tellurium Whiskers. Semiconductors 55, 551–556 (2021). https://doi.org/10.1134/S1063782621060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621060129

Keywords:

Navigation