Skip to main content
Log in

Performance Evaluation of Inversion Mode and Junctionless Dual-Material Double-Surrounding Gate Si Nanotube MOSFET for 5-nm Gate Length

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this work, drain current ID for 5-nm gate length with dual-material (DM) double-surrounding gate (DSG) inversion mode (IM) and junctionless (JL) silicon nanotube (SiNT) MOSFET have been studied and simulation results are reported using Silvaco ATLAS 3D TCAD. For this work, we used the non-equilibrium Green’s function (NEGF) approach and self-consistent solution of Poisson’s equation with Schrödinger's equation. The conduction band splitting into multiple sub-bands has been considered and there is no doping in channel in case of IM SiNT MOSFET. The effect of DM gate engineering for SiNT channel radius 1.5 nm with 0.8-nm gate oxide (SiO2) thickness on ID has been studied. A comparison of results has been done between IM DM DSG and JL DM DSG SiNT. In case of JL, doping concentration is optimized for two concerns: (i) to get the same IOn current as IM device and (ii) to get the same threshold voltage VTh as IM. This has resulted in 102 and 103 times smaller IOff in matching IOn and VTh optimized device, respectively, as compared to IM. It is found that DM gate engineering reduces drain-induced barrier lowering (DIBL) for both IM and JL SiNT MOSFET. In this work, JL have much smaller DIBL ~15 mV/V, almost an ideal SS ~60 mV/dec, and higher IOn/IOff ratio ~2.18 × 108 as compared to available CGAA literature results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. U. K. Das, G. Eneman, R. S. R. Velampati, Y. S. Chauhan, K. B. Jinesh, and T. K. Bhattacharyya, J. Electron Dev. Soc. 6, 1129 (2018).

    Google Scholar 

  2. A. Baidya, S. Baishya, and T. R. Lenk, Mater. Sci. Semicond. Process. 71, 413 (2017).

    Article  Google Scholar 

  3. F. Adamu-Lema, X. Wang, S. M. Amoroso, C. Riddet, B. Cheng, L. Shifren, R. Aitken, S. Sinha, G. Yeric, and A. Asenov, IEEE Trans. Electron Dev. 61, 3372 (2014).

    Article  ADS  Google Scholar 

  4. U. K. Das, M. G. Bardon, D. Jang, G. Eneman, P. Schuddinck, D. Yakimets, P. Raghavan, and G. Groeseneken, IEEE Electron Dev. Lett. 38, 9 (2017).

    Article  ADS  Google Scholar 

  5. F. Lime, O. Moldovan, and B. Iñiguez, IEEE Trans. Electron Dev. 61, 3036 (2014).

    Article  ADS  Google Scholar 

  6. C. J. Su, T. Tsai, Y. L. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, IEEE Electron Dev. Lett. 32, 521 (2011).

    Article  ADS  Google Scholar 

  7. S. Sahay and M. J. Kumar, IEEE Trans. Electron Dev. 63, 3790 (2016).

    Article  ADS  Google Scholar 

  8. Y. Pratap, M. Kumar, S. Kabra, S. Haldar, R. S. Gupta, and M. Gupta, J. Comput. Electron. 17, 288 (2017).

    Article  Google Scholar 

  9. O. Moldovan, F. Lime, and B. Iniguez, IEEE Trans. Electron Dev. 61, 3042 (2014).

    Article  ADS  Google Scholar 

  10. S. Guin, M. Sil, and A. Malik, IEEE Trans. Electron Dev. 64, 953 (2017).

    Article  ADS  Google Scholar 

  11. S. Tayal and A. Nandi, Mater. Sci. Semicond. Process. 80, 63 (2018).

    Article  Google Scholar 

  12. D. Tekleab, IEEE Electron Dev. Lett. 35, 506 (2014).

    Article  ADS  Google Scholar 

  13. D. Moon, S. J. Choi, J. P. Duarte, and Y. K. Choi, IEEE Trans. Electron Dev. 60, 1355 (2013).

    Article  ADS  Google Scholar 

  14. S. Sahay and M. J. Kumar, IEEE Trans. Electron Dev. 64, 21 (2017).

    Article  ADS  Google Scholar 

  15. S. Sahay and M. J. Kumar, IEEE Trans. Electron Dev. 64, 3007 (2017).

    Article  ADS  Google Scholar 

  16. A. Kundu, A. Dasgupta, R. Das, S. Chakraborty, A. Dutta, and C. K. Sarkar, Superlatt. Microstruct. 94, 60 (2016).

    Article  ADS  Google Scholar 

  17. B. Jena, K. P. Pradhan, P. K. Sahu, S. Dash, G. P. Mishra, and S. K. Mohapatra, Electron. Energet. 28, 637 (2015).

    Google Scholar 

  18. B. Jena, K. P. Pradhan, D. Dash, G. P. Mishra, P. K. Sahu, and S. K. Mohapatra, Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 035010 (2015).

    ADS  Google Scholar 

  19. H. Wong and H. Iwai, Microelectron. Eng. 83, 1867 (2006).

    Article  Google Scholar 

  20. Silvaco T-CAD Version: ATLAS 5.19.20.R (2020).

  21. K. Kita and A. Toriumi, Appl. Phys. Lett. 94, 132902 (2009).

    Article  ADS  Google Scholar 

  22. H. Kai, W. Xiaolei, Y. Hong, and W. Wenwu, J. Semicond. 36, 036004 (2015).

  23. J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).

    Article  ADS  Google Scholar 

  24. P. Kasturi, M. Saxena, M. Gupta, and R. S. Gupta, IEEE Trans. Electron Dev. 55, 372 (2008).

    Article  ADS  Google Scholar 

  25. R. K. Sharma, R. Gupta, M. Gupta, and R. S. Gupta, IEEE Trans. Electron Dev. 56, 1284 (2009).

    Article  ADS  Google Scholar 

  26. R. K. Baruah and R. P. Paily, IEEE Trans. Electron Dev. 61, 123 (2014).

    Article  ADS  Google Scholar 

  27. S. Rewari, V. Nath, S. Haldar, S. S. Deswal, and R. S. Gupta, Springer Microsyst. Technol. 25, 1537 (2017).

    Article  Google Scholar 

  28. N. Mohankumar, B. Syamal, and C. K. Sarkar, IEEE Trans. Electron Dev. 57, 820 (2010).

    Article  ADS  Google Scholar 

  29. C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, Solid-State Electron. 54, 97 (2010).

    Article  ADS  Google Scholar 

  30. D. Nagy, G. Indalecio, A. J. G. Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, IEEE J. Electron Dev. Soc. 6, 332 (2018).

    Google Scholar 

  31. N. Boukortt, B. Hadri, S. Patane, A. Caddemi, and G. Crupi, Silicon 9, 885 (2017).

    Article  Google Scholar 

  32. A. Pouydebasque, S. Denorme, N. Loubet, R. Wacquez, J. Bustos, F. Leverd, E. Deloffre, S. Barnola, D. Dutartre, P. Coronel, and T. Skotnicki, IEEE Trans. Nanotechnol. 7, 551 (2008).

    Article  ADS  Google Scholar 

  33. P. Zheng, Y. B. Liao, N. Damrongplasit, M. H. Chiang, and T. J. K. Liu, IEEE Trans. Electron Dev. 61, 3949 (2014).

    Article  ADS  Google Scholar 

  34. V. Pott, K. E. Moselund, D. Bouvet, L. D. Michielis, and A. M. Ionescu, IEEE Trans. Nanotechnol. 7, 733 (2008).

    Article  ADS  Google Scholar 

  35. X. Zhang, D. Connelly, P. Zheng, H. Takeuchi, M. Hytha, R. J. Mears, and T. J. K. Liu, IEEE Trans. Electron Dev. 63, 1502 (2016).

    Article  ADS  Google Scholar 

  36. Y. B. Liao, M. H. Chiang, N. Damrongplasit, W. C. Hsu, and T. J. K. Liu, IEEE Trans. Electron Dev. 61, 2371 (2014).

    Article  Google Scholar 

  37. P. Razavi and G. Fagas, Appl. Phys. Lett. 103, 063506 (2013).

    Article  ADS  Google Scholar 

  38. J. P. Colinge, A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, and P. Razavi, Solid State Electron. 65, 33 (2011).

    Article  ADS  Google Scholar 

  39. Sanjay, B. Prasad, and A. Vohra, Semiconductors 54, 1490 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

One of the authors (Sanjay) acknowledges the financial support in the form of SRF from University Grants Commission (UGC), New Delhi, India during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay, Prasad, B. & Vohra, A. Performance Evaluation of Inversion Mode and Junctionless Dual-Material Double-Surrounding Gate Si Nanotube MOSFET for 5-nm Gate Length. Semiconductors 55, 936–942 (2021). https://doi.org/10.1134/S1063782621040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621040151

Keywords:

Navigation