Skip to main content
Log in

Formation of InAs/GaP Quantum-Well Heterostructures on Silicon Substrates by Molecular-Beam Epitaxy

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The  possibility  of forming a strained pseudomorphous quantum well (QW) consisting of a InxGa1 – xAsyP1 – y quaternary alloy upon the deposition of InAs onto the surface of an epitaxial GaP/Si layer with a developed relief is demonstrated. The QW is studied by means of transmission electron microscopy and steady-state photoluminescence spectroscopy. The formation of two QW segments different in width and composition of the InxGa1 – xAsyP1 – y alloy is observed; in this case, an increase in the QW width is accompanied by a decrease in the content of In and As atoms. The lateral dimensions of the QW segments are no smaller than 20 nm. The QW segments correspond to two different low-temperature photoluminescence bands. The experimentally observed phenomena are interpreted on the assumption of transformation of the surface under the action of elastic strains during heteroepitaxy of InAs on the terraced GaP surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Liangand and J. E. Bowers, Nat. Photon. 4, 511 (2010).

    Article  ADS  Google Scholar 

  2. M. Asghari and A. V. Krishnamoorth, Nat. Photon. 5, 268 (2011).

    Article  ADS  Google Scholar 

  3. A. Rickman, Nat. Photon. 8, 579 (2014).

    Article  ADS  Google Scholar 

  4. Ch. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, et al., Nature (London, U.K.) 528 (7583), 534 (2015).

    Article  ADS  Google Scholar 

  5. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  6. M. Heidemann, S. Hofling, and M. Kamp, Appl. Phys. Lett. 104, 011113 (2014).

    Article  ADS  Google Scholar 

  7. G. Stracke, E. M. Sala, S. Selve, T. Niermann, A. Schliwa, A. Strittmatter, and D. Bimberg, Appl. Phys. Lett. 104, 123107 (2014).

    Article  ADS  Google Scholar 

  8. S. Dadgostar, J. Schmidtbauer, T. Boeck, A. Torres, O. Martinez, J. Jimenez, J. W. Tomm, A. Mogilatenko, W. T. Masselink, and F. Hatami, Appl. Phys. Lett. 108, 102103 (2016).

    Article  ADS  Google Scholar 

  9. D. S. Abramkin, M. A. Putyato, S. A. Budennyy, A. K. Gutakovskii, B. R. Semyagin, V. V. Preobrazhenskii, O. F. Kolomys, V. V. Strelchuk, and T. S. Shamirzaev, J. Appl. Phys. 112, 083713 (2012).

    Article  ADS  Google Scholar 

  10. C. Robert, K. Pereira da Silva, M. O. Nestoklon, M. I. Alonso, P. Turban, J.-M. Jancu, J. Even, H. Carrére, A. Balocchi, P. M. Koenraad, X. Marie, O. Durand, A. R. Gon[tidle]i, and C. Cornet, Phys. Rev. B 94, 075445 (2016).

    Article  ADS  Google Scholar 

  11. C. Robert, C. Cornet, P. Turban, T. Nguyen Thanh, M. O. Nestoklon, J. Even, J. M. Jancu, M. Perrin, H. Folliot, Rohel, S. Tricot, A. Balocchi, D. Lagarde, X. Marie, N. Bertru, O. Durand, and A. Corre, Phys. Rev. B 86, 205316 (2012).

    Article  ADS  Google Scholar 

  12. Yu. Song and M. L. Lee, Appl. Phys. Lett. 103, 141906 (2013).

    Article  ADS  Google Scholar 

  13. D. S. Abramkin, M. O. Petrushkov, M. A. Putyato, B. R. Semyagin, E. A. Emel’yanov, V. V. Preobrazhenskii, A. K. Gutakovskii, and T. S. Shamirzaev, Semiconductors 53, 1143 (2019).

    Article  ADS  Google Scholar 

  14. T. Sakamoto and G. Hashiguchi, Jpn. J. Appl. Phys. 25 (1A), L78 (1986).

    Article  ADS  Google Scholar 

  15. D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987).

    Article  ADS  Google Scholar 

  16. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).

    Article  ADS  Google Scholar 

  17. V. Narayanan, S. Mahajan, N. Sukidi, K. J. Bachmann, V. Woods, and N. Dietz, Philos. Mag., A 80, 555 (2000).

    Article  ADS  Google Scholar 

  18. R. Leon, C. Lobo, T. P. Chin, S. Fafard, S. Ruvimov, Z. Liliental-Weber, and M. A. Stevens Kalceff, Appl. Phys. Lett. 72, 1356 (1998).

    Article  ADS  Google Scholar 

  19. C. G. van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  ADS  Google Scholar 

  20. A. T. Vink, A. J. Bosman, J. A. van der Does de Bye, and R. C. Peters, Solid State Commun. 7, 1475 (1969).

    Article  ADS  Google Scholar 

  21. E. F. Gross and D. S. Nedzvetskii, Sov. Phys. Dokl. 8, 896 (1963).

    ADS  Google Scholar 

  22. D. S. Abramkin, A. K. Gutakovskii, and T. S. Shamirzaev, J. Appl. Phys. 123, 115701 (2018).

    Article  ADS  Google Scholar 

  23. A. Klochikhin, A. Reznitsky, S. Permogorov, T. Breitkopf, M. Grun, M. Hetterich, C. Klingshirn, V. Lyssenko, W. Langbein, and J. M. Hvam, Phys. Rev. B 59, 12947 (1999).

    Article  ADS  Google Scholar 

  24. D. J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1966).

    Article  ADS  Google Scholar 

  25. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  26. S. H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    Article  ADS  Google Scholar 

  27. M. C. Munoz and G. Armelles, Phys. Rev. B 48, 2839 (1993).

    Article  ADS  Google Scholar 

  28. Ch. Teichert, Phys. Rep. 365, 335 (2002).

    Article  ADS  Google Scholar 

  29. K. Muraki, S. Fukatsu, and Y. Shiraki, Appl. Phys. Lett. 61, 557 (1992).

    Article  ADS  Google Scholar 

  30. S. Fukatsu, K. Fujita, H. Yaguchi, Y. Shiraki, and R. Ito, Appl. Phys. Lett. 59, 2103 (1991).

    Article  ADS  Google Scholar 

  31. O. Dehaese, X. Wallart, and F. Mollot, Appl. Phys. Lett. 66, 52 (1995).

    Article  ADS  Google Scholar 

  32. D. J. Godbey and M. G. Ancona, J. Vac. Sci. Technol. A 15, 976 (1997).

    Article  ADS  Google Scholar 

  33. V. Haxha, I. Drouzas, J. M. Ulloa, M. Bozkurt, P. M. Koenraad, D. J. Mowbray, H. Y. Liu, M. J. Steer, M. Hopkinson, and M. A. Migliorato, Phys. Rev. B 80, 165334 (2009).

    Article  ADS  Google Scholar 

  34. E. E. Mura, A. Gocalinska, G. Juska, S. T. Moroni, A. Pescaglini, and E. Pelucchi, Appl. Phys. Lett. 110, 113101 (2017).

    Article  ADS  Google Scholar 

  35. M. J. S. P. Brasil, R. E. Nahory, M. C. Tamargo, and S. A. Schwarz, Appl. Phys. Lett. 63, 2688 (1993).

    Article  ADS  Google Scholar 

  36. M. Taskinen, M. Sopanen, H. Lipsanen, J. Tulkki, T. Tuomi, and J. Ahopelto, Surf. Sci. 376, 60 (1997).

    Article  ADS  Google Scholar 

  37. P. Venezuela, J. Terso, J. A. Floro, E. Chason, D. M. Follstaedt, F. Liu, and M. G. Lagally, Nature (London, U.K.) 397, 678 (1999).

    Article  ADS  Google Scholar 

  38. J. Tersoff, Phys. Rev. Lett. 77, 2017 (1996).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

HRTEM studies were conducted using equipment of the Multiple-Access Center “Nanostructures”.

Funding

The study was supported by the Russian Foundation for Basic Research and the Ministry of Science and Innovation Policy of Novosibirsk Region, project no. 19-42-543009. The part of the study concerned with HRTEM measurements were supported by the Russian Science Foundation, project 19-72-30023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Abramkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramkin, D.S., Petrushkov, M.O., Emelyanov, E.A. et al. Formation of InAs/GaP Quantum-Well Heterostructures on Silicon Substrates by Molecular-Beam Epitaxy. Semiconductors 55, 194–201 (2021). https://doi.org/10.1134/S1063782621020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621020020

Keywords:

Navigation