Skip to main content
Log in

Luminescence Photodynamics of Hybrid-Structured InP/InAsP/InP Nanowires Passivated by a Layer of TOPO-CdSe/ZnS Quantum Dots

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studies of the decay photodynamics of excited states in a hybrid semiconductor nanostructure formed as an array of InP nanowires with an InAsP nanoinsert that are passivated with a quasi-Langmuir trioctylphosphine oxide (TOPO) layer containing colloidal CdSe/ZnS quantum dots are presented. The luminescence spectra and kinetics of InAsP nanoinserts in the near-infrared region at temperatures of 80 and 293 K are recorded. The formation of the layer of TOPO-CdSe/ZnS quantum dots at the surface of InP/InAsP/InP nanowires brings about an increase in the duration of radiative recombination and the appearance of its dependence on temperature. It is established that, in the synthesized structure, there is a type-II heterojunction at the interface between the InAsP nanoinsert and the InP bulk. The influence of interphase processes on an increase in the duration of emission is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Meng-Lin Lu, Chih-Wei Lai, Hsing-Ju Pan, Chung-Tse Chen, Pi-Tai Chou, and Yang-Fang, Nano Lett. 13, 1920 (2013).

    Article  ADS  Google Scholar 

  2. S. Bley, M. Diez, F. Albrecht, S. Resch, S. R. Waldvogel, A. Menzel, M. Zacharies, J. Gutowski, and T. Voss, J. Phys. Chem. C 119, 15627 (2015).

    Article  Google Scholar 

  3. P. Pathak, M. Podzorski, D. W. Bahnemann, and V. Subramanian, J. Phys. Chem. C 122, 13659 (2018).

    Article  Google Scholar 

  4. M. K. Mahato, C. Govind, V. Karunakaran, S. Nandy, C. Sudakar, and E. Prasad, J. Phys. Chem. C 123, 20512 (2019).

    Article  Google Scholar 

  5. A. I. Khrebtov, V. G. Talalaev, P. Werner, V. V. Danilov, M. V. Artemyev, B. V. Novikov, I. V. Shtrom, A. S. Panfutova, and G. E. Cirlin, Semiconductors 47, 1346 (2013).

    Article  ADS  Google Scholar 

  6. A. I. Khrebtov, V. G. Talalaev, Yu. B. Samsonenko, P. Werner, V. V. Rutskaya, M. V. Artem’ev, and G. E. Tsyrlin, Tech. Phys. Lett. 40, 558 (2014).

    Article  ADS  Google Scholar 

  7. T. Förster, Naturwissensch. 33, 166 (1946).

    Article  ADS  Google Scholar 

  8. V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Energy Transfer of Electronic Excitation (Nauka, Leningrad, 1977), p. 312 [in Russian].

    Google Scholar 

  9. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996).

    Article  ADS  Google Scholar 

  10. V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spectrosc. 114, 880 (2013).

    Article  ADS  Google Scholar 

  11. A. S. Kulagina, V. V. Danilov, V. B. Shilov, K. M. Grigorenko, and V. V. Vlasov, Opt. Spectrosc. 123, 164 (2017).

    Article  ADS  Google Scholar 

  12. V. V. Danilov, A. S. Kulagina, N. V. Sibirev, A. I. Khrebtov, and V. B. Shilov, Opt. Spectrosc. 125, 716 (2018).

    Article  ADS  Google Scholar 

  13. V. V. Danilov, A. S. Kulagina, and N. V. Sibirev, Appl. Opt. 57, 8166 (2018).

    Article  ADS  Google Scholar 

  14. E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simões Gamboa, Ann. Phys. (Berlin) 528, 272 (2016).

    Article  ADS  Google Scholar 

  15. M. Jones and G. D. Scholes, J. Mater. Chem. 20, 3533 (2010).

    Article  Google Scholar 

  16. D. L. Woodall, A. K. Tobias, and M. Jones, Chem. Phys. 471, 2 (2016).

    Article  Google Scholar 

  17. B. R. Fisher, H. J. Eisler, N. E. Stott, and M. G. Bawendi, J. Phys. Chem. B 108, 143 (2008).

    Article  Google Scholar 

  18. A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, Phys. Rev. B 75, 035329 (2007).

    Article  ADS  Google Scholar 

  19. F. Menezes, A. Fedorov, C. Baleisao, B. Valeur, and M. N. Berberan-Santos, Methods Appl. Fluoresc. 1, 015002 (2013).

    Article  ADS  Google Scholar 

  20. H. Xu, V. Chmyrov, J. Widengren, H. Brismar, and Y. Fu, Phys. Chem. Chem. Phys. 17, 27588 (2015).

    Article  Google Scholar 

  21. E. N. Bodunov, Y. A. Antonov, and A. L. Simões Gamboa, J. Chem. Phys. 146, 114102 (2017).

    Article  ADS  Google Scholar 

  22. M. S. Smirnov, O. V. Ovchinnikov, and A. S. Perepelitsa, Opt. Spectrosc. 126, 62 (2019).

    Article  ADS  Google Scholar 

  23. A. S. Kulagina, A. I. Khrebtov, R. R. Reznik, E. V. Ubyivovk, A. P. Litvin, I. D. Skurlov, G. E. Tsyrlin, E. N. Bodunov, and V. V. Danilov, Opt. Spectrosc. 128, 119 (2020).

    Article  ADS  Google Scholar 

  24. A. I. Khrebtov, R. R. Reznik, E. V. Ubyivovk, A. P. Litvin, I. D. Skurlov, P. S. Parfenov, A. S. Kulagina, V. V. Danilov, and G. E. Cirlin, Semiconductors 53, 1258 (2019).

    Article  ADS  Google Scholar 

  25. G. E. Cirlin, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, K. P. Kotlyar, I. V. Ilkiv, I. P. Soshnikov, D. A. Kirilenko, and N. V. Kryzhanovskaya, Semiconductors 52, 1416 (2018).

    Article  ADS  Google Scholar 

  26. L. K. Vugt, S. J. Veen, E. P. A. M. Bakkers, A. L. Roest, and D. Vanmaekelbergh, J. Am. Chem. Soc. 127, 12357 (2005).

    Article  Google Scholar 

  27. B. Pal, K. Goto, M. Ikezawa, Y. Masumoto, P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 93, 073105 (2008).

    Article  ADS  Google Scholar 

  28. J. Lorenz and A. B. Ellis, J. Am. Chem. Soc. 120, 10970 (1998).

    Article  Google Scholar 

  29. K. E. Knowles, D. B. Tice, E. A. McArthur, C. G. Solomon, and E. A. Weiss, J. Am. Chem. Soc. 132, 1041 (2010).

    Article  Google Scholar 

  30. E. S. Williams, K. J. Major, A. Tobias, D. Woodall, V. Morales, C. Lippincott, P. J. Moyer, and M. Jones, J. Phys. Chem. C 117, 4227 (2013).

    Article  Google Scholar 

  31. E. N. Bodunov and A. L. Simoes Gamboa, J. Phys. Chem. C 123, 25515 (2019).

    Article  Google Scholar 

Download references

Funding

The part of the study concerned with the synthesis of samples was supported by the Ministry of Education and Science of the Russian Federation, government order. The part of the study concerned with spectroscopic measurements was supported by the Russian Science Foundation, project no. 19-72-30010. The part of the study concerned with recording steady-state PL spectra was supported by the Russian Foundation for Basic Research, project no. 18-32-00980 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Khrebtov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrebtov, A.I., Kulagina, A.S., Danilov, V.V. et al. Luminescence Photodynamics of Hybrid-Structured InP/InAsP/InP Nanowires Passivated by a Layer of TOPO-CdSe/ZnS Quantum Dots. Semiconductors 54, 1141–1146 (2020). https://doi.org/10.1134/S1063782620090158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090158

Keywords:

Navigation