Skip to main content
Log in

Impact of Carrier Gas on the GaN Layers Properties Grown on (001) and (11n) GaAs Substrates by AP-MOVPE: Comparative Study

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The impact of carrier gas on the GaN layers properties grown by atmospheric pressure metal-organic vapor-phase epitaxy (AP-MOVPE) on (001) and (11n) GaAs substrates were investigated. The Arrhenius plots of growth rate deduced from laser reflectometry measurements give an activation energy of Ea1 = 0.045 eV when the H2 was used as the carrier gas. In the case of using N2 as the carrier gas, the results give Ea2 = 0.081 eV as a value of activation energy, which is approximately 2 times greater than Ea1. Scanning electron microscopy results show that when N2 is used, the resulting material quality is low, but the use of H2 is successful to prevent the cracking of GaN layers and results in improvement of crystalline properties. From the X-ray diffraction result, we conclude that both (001) and (113) GaAs substrate orientations as well as the use of H2 as the carrier gas favors the GaN growth with cubic structure, whereas the GaN hexagonal structure is favored for growth on (112) and (111) GaAs substrates orientations with N2. Cathodoluminescence measurements show that a mechanism of phase transformation occurs when the growth temperature rise from 800 to 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. X. Liu,  H.-Y. Wang, H.-C. Chiu, Y. Chen, D. Li, C.-R.  Huang,   H.-L.   Kao,   H.-C.   Kuo,   and S.-W. H. Chen, J. Alloys Compd. 814, 152293 (2020).

    Article  Google Scholar 

  2. Y. Li, W. Wang, X. Li, L. Huang, Z. Lin, Y. Zheng, X. Chen, and G. Li, J. Alloys Compd. 771, 1000 (2019).

    Article  Google Scholar 

  3. S. S. Chauhan and A. Sunny, Optik 135, 298 (2017).

    Article  ADS  Google Scholar 

  4. V. D. Compeán-García, H. Moreno-García, E. López-Luna, H. Pérez Ladrón de Guevara, A. Escobosa-Echavarría, Y. Kudriavtsev, F. J. Rodríguez-Aranda, A. G. Rodríguez, and M. A. Vidal, J. Mater. Sci. Semicond. Process 93, 196 (2019).

    Article  Google Scholar 

  5. S. N. Waheeda, N. Zainal, Z. Hassan, S. V. Novikov, A. V. Akimov, and A. J. Kent, Appl. Surf. Sci. 317, 1010 (2014).

    Article  ADS  Google Scholar 

  6. D. J. As, Proc. SPIE 7608, 76080G1 (2010).

  7. S. V. Novikov, C. T. Foxon, and A. J. Kent, Phys. Status Solidi C 8, 1439 (2011).

    Article  ADS  Google Scholar 

  8. H. Vilchis, V. M. Sanchez-R, and A. Escobosa, Thin Solid Films 520, 5191 (2012).

    Article  ADS  Google Scholar 

  9. J. Laifi, N. Chaaben, H. Bouazizi, N. Fourati, C. Zerrouki, Y. El Gmili, A. Bchetnia, J. P. Salvestrini, and B. El Jani, Superlatt. Microstruct. 86, 472 (2015).

    Article  ADS  Google Scholar 

  10. J. Laifi, N. Chaaben, H. Bouazizi, N. Fourati, C. Zerrouki, Y. El Gmili, A. Bchetnia, J. P. Salvestrini, and B. El Jani, Superlatt. Microstruct. 94, 30 (2016).

    Article  ADS  Google Scholar 

  11. J. Laifi, N. Chaaben, Y. El Gmili, J. P. Salvestrini, A. Bchetnia, and B. El Jani, J. Vacuum 136, 8 (2017).

  12. J. Laifi, C. Saidi, N. Chaaben, A. Bchetnia, Y. El Gmili, and J. P. Salvestrini, J. Mater. Sci. Semicond. Process. 101, 253 (2019).

    Article  Google Scholar 

  13. O. Jumaah and Y. Jaluria, J. Heat Transfer 141, 082101 (2019).

    Article  Google Scholar 

  14. J. Liu, X. Liu, C. Li, H. Wei, Y. Guo, C. Jiao, Z. Li, X. Xu, H. Song, S. Yang, Q. Zhu, Z. Wang, A. Yang, T. Yang, and H. Wang, Nanoscale Res. Lett. 6, 69 (2011).

    Article  ADS  Google Scholar 

  15. D. J. Fu, Y. S. Park, G. N. Panin, and T. W. Kang, Jpn. J. Appl. Phys. 44, L342 (2005).

    Article  ADS  Google Scholar 

  16. N. Zainal, S. V. Novikov, A. V. Akimov, C. R. Staddon, C. T. Foxon, and A. J. Kent, Phys. B (Amsterdam, Neth.) 407, 2964 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Laifi.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laifi, J., Bchetnia, A. Impact of Carrier Gas on the GaN Layers Properties Grown on (001) and (11n) GaAs Substrates by AP-MOVPE: Comparative Study. Semiconductors 54, 691–697 (2020). https://doi.org/10.1134/S106378262006010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262006010X

Keyword:

Navigation