Skip to main content
Log in

Effects of Doping of Bragg Reflector Layers on the Electrical Characteristics of InGaAs/GaAs Metamorphic Photovoltaic Converters

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The current–voltage characteristics of InxGa1 –xAs/GaAs metamorphic photovoltaic converters with built-in n-InGaAs/InAlAs Bragg reflectors are studied at an indium content of x = 0.025–0.24. The series resistance of the heterostructures is measured in the temperature range from 90 to 400 K. It is found that a sharp rise in the resistance of silicon-doped reflectors with an increasing fraction of In is due to weak activation of the donor impurity in InAlAs–n:Si layers. As a result, the energy barriers for majority carriers are formed in the latter, with a height of 0.32–0.36 eV and a substantial width. To suppress this effect, the technology of the Te doping of n-InGaAs/InAlAs Bragg reflectors is developed, which reduces the series resistance by five orders of magnitude. This makes it possible to keep the fill factor of the current–voltage characteristic above 80% up to current densities of 2 A/cm2. Values exceeding 85%, achieved for the quantum efficiency, indicate that the “memory” and tellurium segregation effects characteristic of this kind of impurity are suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Dimroth, T. N. D. Tibbits, M. Niemeyer, F. Predan, P. Beutell, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fuß-Kailuweit, A. W. Bett, R. Krause, C. Drazek, E. Guiot, J. Wasselin, A. Tauzin, and T. Signamarcheix, IEEE J. Photovolt. 6, 343 (2016).

    Article  Google Scholar 

  2. N. Miller, P. Patel, C. Struempel, C. Kerestes, D. Aiken, and P. Sharps, AIP Conf. Proc. 1616, 50 (2014).

    Article  ADS  Google Scholar 

  3. P. Sharps, D. Aiken, B. Cho, S. Cruz, D. Derkacs, N. Fatemi, A. Haas, C. Kerestes, N. Miller, B. Pantha, P. Patel, M. Stan, A. Stavrides, J. Steinfeldt, C. Struempel, and S. Whipple, E3S Web Conf. 16, 03002 (2017).

  4. P. T. Chiu, D. C Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, in Proceedings of the 40th IEEE Photovoltaic Specialists Conference,2014, p. 11.

  5. N. A. Kalyuzhnyy, V. M. Emelyanov, S. A. Mintairov, and M. Z. Shvarts, AIP Conf. Proc. 2012, 110002 (2018).

    Article  Google Scholar 

  6. Y. Kim, H. B. Shin, W. H. Lee, S. H. Jung, C. Z. Kim, H. Kim, Y. T. Lee, and H. K. Kang, Sol. Energy Mater. Sol. Cells 200, 109984 (2019).

    Article  Google Scholar 

  7. N. A. Kalyuzhnyy, V. M. Emelyanov, V. V. Evstropov, S. A. Mintairov, M. A. Mintairov, M. V. Nahimovich, R. A. Salii, and M. Z. Shvarts, AIP Conf. Proc. 2149, 050006 (2019).

    Article  Google Scholar 

  8. S. R. Messenger, in Proceedings of the Electronics Science and Technology Division Seminar, March 15,2001, p. 201.

  9. M. Meusel, C. Baur, W. Guter, M. Hermle, D. Frank, A. Bett, T. Bergunde, R. Dietrich, R. Kern, W. Köstler, M. Nell, and W. Zimmermann, in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition EUPVSEC,2005, p. 20.

  10. A. S. Vlasov, V. M. Emelyanov, E. S. Aronova, O. I. Chosta, N. A. Kalyuznyy, S. A. Mintairov, M. Z. Shvarts, and A. N. Trufanov, in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition EUPVSEC,2010, p. 347.

  11. V. M. Lantratov, I. V. Kochnev, and M. Z. Shvarts, in Proceedings of the 27th Conference on State-of-the-Art Program on Compound Semiconductors SOTAPOCS Electrochem. Soc.,1997, Vol. 97-21, p. 125.

  12. X. Duan, Y. Huang, Y. Shang, J. Wang, and X. Ren, Opt. Lett. 39, 2447 (2014).

    Article  ADS  Google Scholar 

  13. M. Z. Shvarts, O. I. Chosta, I. V. Kochnev, V. M. Lantratov, and V. M. Andreev, Sol. Energy Mater. Sol. Cells 68, 105 (2001).

    Article  Google Scholar 

  14. V. M. Emelyanov, N. A. Kalyuzhniy, S. A. Mintairov, M. Z. Shvarts, and V. M. Lantratov, Semiconductors 44, 1600 (2010)).

    Article  ADS  Google Scholar 

  15. V. M. Emelyanov, M. A. Mintairov, N. A. Kalyuzhnyy, S. A. Mintairov, and M. Z. Shvarts, AIP Conf. Proc. 2012, 090003 (2018).

    Article  Google Scholar 

  16. N. A. Kalyuzhnyy, S. A. Mintairov, A. M. Nadtochiy, V. N. Nevedomskiy, D. V. Rybalchenko, and M. Z. Shvarts, Electron. Lett. 53, 173 (2017).

    Article  Google Scholar 

  17. D. V. Rybalchenko, S. A. Mintairov, R. A. Salii, N. Kh. Timoshina, M. Z. Shvarts, and N. A. Kalyuzhnyi, Semiconductors 51, 93 (2017).

    Article  ADS  Google Scholar 

  18. Y. M. Houng and T. S. Low, J. Cryst. Growth 77, 272 (1986).

    Article  ADS  Google Scholar 

  19. V. I. Egorkin, V. E. Zemlyakov, A. V. Nezhentsev, V. I. Garmash, N. A. Kalyuzhnyi, and S. A. Mintairov, Russ. Microelectron. 47, 388 (2018).

    Article  Google Scholar 

  20. M. Z. Shvarts, A. E. Chalov, E. A. Ionova, V. R. Larionov, D. A. Malevskiy, V. D. Rumyantsev, and S. S. Titkov, in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition EUPVSEC,2005, p. 278.

  21. V. R. Larionov, D. A. Malevskii, P. V. Pokrovskii, and V. D. Rumyantsev, Tech. Phys. 60, 891 (2015).

    Article  Google Scholar 

  22. R. Hoheisel and A. W. Bett, IEEE J. Photovolt. 2, 398 (2012).

    Article  Google Scholar 

  23. A. S. Gudovskikh, K. Zelentsov, N. Kalyuzhnyy, V. Evstropov, V. M. Lantratov, and S. Mintairov, J. Phys. D: Appl. Phys. 45, 495305 (2012).

    Article  Google Scholar 

  24. M. Z. Shvarts, A. S. Gudovskikh, N. A. Kalyuzhnyy, S. A. Mintairov, A. A. Soluyanov, N. Kh. Timoshina, and A. Luque, AIP Conf. Proc. 1616, 29 (2014).

    Article  ADS  Google Scholar 

  25. S. C. Jain and D. J. Roulston, Solid State Electron. 34, 453 (1991).

    Article  ADS  Google Scholar 

  26. E. Wolak, J. C. Harmand, T. Matsuno, K. Inoue, and T. Narusawa, Appl. Phys. Lett. 59, 111 (1991).

    Article  ADS  Google Scholar 

  27. M. S. Hybertsen, Appl. Phys. Lett. 58, 1759 (1991).

    Article  ADS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research under research project no. 16-29-03216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Emelyanov.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelyanov, V.M., Kalyuzhnyy, N.A., Mintairov, S.A. et al. Effects of Doping of Bragg Reflector Layers on the Electrical Characteristics of InGaAs/GaAs Metamorphic Photovoltaic Converters. Semiconductors 54, 476–483 (2020). https://doi.org/10.1134/S1063782620040053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620040053

Keywords:

Navigation