Skip to main content
Log in

Excitonic Effects and Impurity–Defect Emission in GaAs/AlGaAs Structures Used for the Production of Mid-IR Photodetectors

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A series of undoped GaAs/AlxGa1 –xAs multiple quantum well heterostructures, whose doped analogs are used for the production of photodetectors operating in the spectral range 8–12 μm, is fabricated by molecular-beam epitaxy. For the heterostructures, the spectral position of absorption lines corresponding to the allowed transitions between quantum-confined electron and hole levels in GaAs layers is established. The influence of impurity–defect states on the luminescence and absorption spectra of quantum wells is studied. The excitonic corrections for the allowed transitions are determined in relation to the quantum-well width and the aluminum content in the barrier layers. The role of excitonic effects in restoring the structure of single-electron states from interband-absorption spectra (luminescence-excitation spectra) and the relationship between these states and the working region of IR photodetectors based on GaAs/AlxGa1 –xAs quantum wells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017).

    Article  ADS  Google Scholar 

  2. S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Advances in Infrared Photodetectors in Semiconductors and Semimetals (Academic, New York, 2011).

    Google Scholar 

  3. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, Berlin, 2007).

    Google Scholar 

  4. H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, Appl. Phys. Lett. 113, 171107 (2018).

    Article  ADS  Google Scholar 

  5. S. V. Bandara, S. D. Gunapala, J. K. Liu, E. M. Luong, J. M. Mumolo, W. Hong, D. K. Sengupta, and M. J. McKelvey, Appl. Phys. Lett. 72, 2427 (1998).

    Article  ADS  Google Scholar 

  6. M. Helm, Semicond. Semimet. 62, 1 (1999).

    Article  Google Scholar 

  7. B. F. Levine, J. Appl. Phys. 74, R1 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  8. K. K. Choi, D. P. Forrai, D. W. Endre, and J. Sun, IEEE J. Quant. Electron. 45, 1255 (2009).

    Article  ADS  Google Scholar 

  9. A. Nedelcu, Y. Creten, V. Guériaux, A. Berurier, V. Bria, N. B. l’Isle, and C. V. Hoof, Proc. SPIE 7826, 78261K (2010).

    Article  ADS  Google Scholar 

  10. P. B. Vigneron, S. Pirotta, I. Carusotto, N. L. Tran, G. Biasiol, J. M. Manceau, A. Bousseksou, and R. Colombelli, Appl. Phys. Lett. 114, 131104 (2019).

    Article  ADS  Google Scholar 

  11. K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olve, Appl. Phys. Lett. 103, 201113 (2013).

    Article  ADS  Google Scholar 

  12. W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).

    Article  ADS  Google Scholar 

  13. Z. H. Chen, S. Hellström, Z. Y. Yu, M. Qiu, and Y. Fu, Appl. Phys. Lett. 100, 043502 (2012).

    Article  ADS  Google Scholar 

  14. L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and L. G. Hu, Sci. Rep. 4, 3914 (2014).

    Article  Google Scholar 

  15. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, Nat. Commun. 2, 579 (2011).

    Article  ADS  Google Scholar 

  16. D. V. Kazantsev and E. A. Kazantseva, JETP Lett. 107, 512 (2018).

    Article  ADS  Google Scholar 

  17. D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, Phys. Usp. 60, 259 (2017).

    Article  ADS  Google Scholar 

  18. C. F. Klingshirn, Semiconductor Optics (Springer Science, New York, 2012).

    Book  Google Scholar 

  19. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).

    Article  ADS  Google Scholar 

  20. V. S. Krivobok, S. N. Nikolaev, V. S. Bagaev, A. A. Pruchkina, E. E. Onishchenko, S. A. Kolosov, Yu. V. Klevkov, and M. L. Skorikov, J. Appl. Phys. 119, 055704 (2016).

    Article  ADS  Google Scholar 

  21. V. S. Krivobok, S. N. Nikolaev, S. I. Chentsov, E. E. Onishchenko, V. S. Bagaev, V. I. Kozlovskii, S. V. Sorokin, I. V. Sedova, S. V. Gronin, and S. V. Ivanov, JETP Lett. 104, 110 (2016).

    Article  ADS  Google Scholar 

  22. N. R. Jungwirth, H. S. Chang, M. Jiang, and G. D. Fuchs, ACS Nano 10, 1210 (2016).

    Article  Google Scholar 

  23. V. S. Krivobok, S. N. Nikolaev, S. I. Chentsov, E. E. Onishchenko, A. A. Pruchkina, V. S. Bagaev, A. A. Silina, and N. A. Smirnova, J. Lumin. 200, 240 (2018).

    Article  Google Scholar 

  24. H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B 46, 4092 (1992).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 18-29-20122-mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Grigor’eva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivobok, V.S., Litvinov, D.A., Nikolaev, S.N. et al. Excitonic Effects and Impurity–Defect Emission in GaAs/AlGaAs Structures Used for the Production of Mid-IR Photodetectors. Semiconductors 53, 1608–1616 (2019). https://doi.org/10.1134/S1063782619160139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619160139

Keywords:

Navigation