Skip to main content
Log in

Investigation of the Initial Silicon-on-Sapphire Layer Formed by CVD Techniques

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The complexity of optimizing the technology of heteroepitaxy is an important limiting factor of the application of silicon-on-sapphire (SOS) structures. In order to eliminate this technological barrier, we study the gas-phase formation of the initial silicon layer on the R-plane of sapphire. The parameters of the deposited layers are analyzed using industrial quality-control methods and X-ray diffraction, SEM, and Raman-spectroscopy. The resistivity-distribution profiles are obtained by the spreading-resistance (SRP) method. It is shown that the initial stage of growth at a temperature of 910–930°C leads to a decrease in the autodoping of the silicon layer with aluminum from the substrate. Heat treatment of the initial layer formed at a temperature of 945–965°C makes it possible to obtain a high structural quality of SOS structures in a wide range of deposition temperatures (960–1005°C) of the main layer layer. Comparison of the SOS structures obtained with optimal parameters of the developed mode and by means of the conventional process shows a decrease in the full width at half-maximum of the rocking curve to ~0.24°, a decrease in mechanical compressive stresses to 0.8–1.96 GPa, and homogeneity of the resistivity profile to a depth of 180–350 nm. Application of the developed technological modes can significantly improve the homogeneity of the control parameters of the SOS in a single process, which improves the performance of the manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Kaya, H. Koser, and E. Culurciello, Electron. Lett. 42, 526 (2006).

    Article  Google Scholar 

  2. T. Galchev, W. C. Welch, and K. Najafi, in Proceedings of the IEEE 20th International Conference on Micro Electro Mechanical Systems, Hyogo, Japan, January 21–25,2007 (IEE Xplore Digital Library, 2007), p. 309.

  3. G. C. Ndubuisi, J. Liu, and J. M. Cowley, Microsc. Res. Tech. 20, 439 (1992).

    Article  Google Scholar 

  4. Q.-Y. Wang, J.-P. Nie, F. Yu, et al., Mater. Sci. Eng. B 72, 189 (2000).

    Article  Google Scholar 

  5. Q. Y. Wang, Yu. Zan, J. Wang, and Y. H. Yu, Mater. Sci. Eng. B 29, 43 (1995).

    Article  Google Scholar 

  6. A. A. Chistilin, A. A. Romanov, Yu. M. Moskovskaya, and A. V. Ulanova, Russ. Microelectron. 40, 209 (2011).

    Article  Google Scholar 

  7. P. Baeri and E. Rimini, Mater. Chem. Phys. 46, 169 (1996).

    Article  Google Scholar 

  8. M. Moyzykh, S. Samoilenkov, V. Amelichev, et al., J. Cryst. Growth 383, 145 (2013).

    Article  ADS  Google Scholar 

  9. E. M. Sokolov, S. D. Fedotov, V. N. Statsenko, S. P. Timoshenkov, and A. V. Emelyanov, Semiconductors 51, 1692 (2017).

    Article  ADS  Google Scholar 

  10. V. S. Papkov and M. B. Tsybul’nikov, in Epitaxial Silicon Layers on Dielectric Substrates and Devices Based on them, Ed. by A. Yu. Malinin (Energiya, Moscow, 1979) [in Russian].

    Google Scholar 

  11. Yu. B. Bolkhovityanov, A. K. Gutakovskii, A. S. Deryabin, O. P. Pchelyakov, and L. V. Sokolov, Semiconductors 42, 1 (2008).

    Article  ADS  Google Scholar 

  12. A. Yu. Ignatov, V. S. Postolov, and M. M. Sabel’nikova, in Proceedings of the 6th International Conference on Solid State Chemistry and Modern Micro- and Nanotechnology (SevKavGTU, Kislovodsk, Stavropol’, 2006).

  13. S. D. Fedotov, S. P. Timoshenkov, E. M. Sokolov, and V. N. Statsenko, Izv. Vyssh. Uchebn. Zaved., Radioelektron., No. 5, 28 (2017).

  14. N. E. Maslova, A. A. Antonovsky, D. M. Zhigunov, V. Yu. Timoshenko, V. N. Glebov, and V. N. Seminogov, Semiconductors 44, 1040 (2010).

    Article  ADS  Google Scholar 

  15. E. Anastassakis, A. Cantarero, and M. Cardona, Phys. Rev. B 41, 7529 (1990).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the staff of the Research Laboratory, RMTA MIET, N.N. Gerasimenko and D.I. Smirnov for carrying out X-ray analysis of the thin layers and help in interpreting the results.

Funding

The work was supported in part by the Federal Targeted Program for 2014–2020 of the Ministry of Education and Science of the Russian Federation (agreement no. 14.574.21.0184 of October 3, 2017, unique identifier RFMEFI57417X0184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Fedotov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, S.D., Sokolov, E.M., Statsenko, V.N. et al. Investigation of the Initial Silicon-on-Sapphire Layer Formed by CVD Techniques. Semiconductors 53, 2016–2023 (2019). https://doi.org/10.1134/S1063782619150065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619150065

Keywords:

Navigation