Skip to main content
Log in

Effect of Deposition Time on Structural, Morphological and Optical Properties of PVA Capped SnS Films Grown by CBD Process

  • SPECTROSCOPY, INTERACTION WITH RADIATION
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this study, the effect of deposition time on physical properties of tin monosulphide films capped by polyvinyl alcohol was investigated. Chemical bath deposition technique was used to deposit Polyvinyl alcohol capped SnS films on cleaned glass substrates and the deposition was carried out at four different times varying from 45 to 90 min. The X-ray diffraction study revealed that the deposited layers were polycrystalline in nature with (040) as the preferred plane. Single phase SnS was observed in the layers grown at a deposition time of 90 min while the other layers had secondary phases of Sn and S. The XRD data was also used to determine various parameters such as crystallite size, dislocation density, lattice strain, stacking faults and inter planar spacing. Raman measurements exhibited same structural phases, consistent with the XRD observations. The surface morphology of the layers was initially uneven and become uniform at 90 min deposition time. Fourier transform infrared spectra, confirmed the presence of SnS and PVA in the films. Optical studies revealed high optical absorption coefficient for all the films with a shift in optical band gap value compared with the bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys. 15, 897 (2015).

    Article  ADS  Google Scholar 

  2. J. A. Andrade-Arvizu, M. Courel-Piedrahital, and O. Vigil-Galan, J. Mater. Sci.: Mater. Electron. 26, 4541 (2015).

    Google Scholar 

  3. K. T. Ramakrishna Reddy, N. Koteswsara Reddy, and R. W. Miles, Sol. Energy Mater Sol. Cells 90, 3041 (2006).

    Article  Google Scholar 

  4. E. Guneri, F. Gode, C. Ulutas, F. Kirmigigul, and G. Altindemir, Chalcogenide Lett. 7, 685 (2010).

    Google Scholar 

  5. J. J. L. Hmar, T. Majumder, and S. P. Mondal, Thin Solid Films 598, 243 (2016).

    Article  ADS  Google Scholar 

  6. U. Baishya and D. Sarkar, Bull. Mater. Sci. 34, 1285 (2011).

    Article  Google Scholar 

  7. P. K. Khanna, N. Singh, and S. Charan, Mater. Lett. 61, 4725 (2007).

    Article  Google Scholar 

  8. I. S. Elashmawi, A. M. Abdelghany, and N. A. Hakeema, J. Mater. Sci. Mater. Electron. 24, 2956 (2014).

    Article  Google Scholar 

  9. S. C. Ezugwu, F. I. Ezema, R. U. Asogwa, B. A. Ezekoye, A. B. C. Ekwealor, C. Chigbo, M. Anasuya, and M. Mahaboob Beevi, Optoelectron. Adv. Mater. 3, 528 (2009).

    Google Scholar 

  10. M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi, and M. Rajarajan, J. Sol-Gel Sci. Technol. 61, 14 (2012).

    Article  Google Scholar 

  11. S. K. M. Begum, G. Nirmala, K. Ravindranadh, T. A. Swini, M. C. Rao, P. Sambasiva Rao, and R. V. S. S. N. Ravikumar, J. Mol. Struct. 1006, 344 (2011).

    Article  ADS  Google Scholar 

  12. Donglin Xia, X. Jun, Wenqing Shi, Pan Lei, and Xiujian Zhao, Key Eng. Mater. 509, 333 (2012).

    Article  Google Scholar 

  13. M. Safonova, P. K. Nair, E. Mellikov, A. R. Garcia, K. Kerm, N. Revathi, T. Romann, V. Mikli, and O. Volobujeva, J. Mater. Sci.: Mater. Electron. 25, 3160 (2014).

    Google Scholar 

  14. T. H. Sajeesh, A. S. Cherian, C. Sudha Kartha, and K. P. Vijayakumar, Energy Proc. 15, 325 (2012).

    Article  Google Scholar 

  15. A. Basaka, A. Hati, A. Mondala, U. P. Singh, and S. K. Taheruddinc, Thin Solid Films 645, 97 (2018).

    Article  ADS  Google Scholar 

  16. A. Ceylan, Mater. Lett. 201, 194 (2017).

    Article  Google Scholar 

  17. S. Jana, R. Thapa, R. Maity, and K. K. Chattopadhyay, Phys. E (Amsterdam, Neth.) 40, 3121 (2008).

  18. E. Guneri, C. Ultas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Surf. Sci. 25, 1189 (2010).

    Article  ADS  Google Scholar 

  19. T. H. Patel, Open Surf. Sci. J. 4, 6 (2012).

    Article  Google Scholar 

  20. G. H. Yue, D. L. Peng, P. X. Yan, and L. S. Wang, J. Alloy Compd. 468, 254 (2009).

    Article  Google Scholar 

  21. K. Sarmah, R. Sarma, and H. L. Das, Chalcogenide Lett. 5, 153 (2008).

    Google Scholar 

  22. A. Purohit, S. Chander, S. P. Nehra and M. S. Dhaka, Phys. E (Amsterdam, Neth.) 69, 342 (2015).

  23. T. Sreenivasulu Reddy, G. Phaneendra Reddy, and K. T. Ramakrishna Reddy, Appl. Surf. Sci. 458, 333 (2018).

    Article  ADS  Google Scholar 

  24. B. H. Baby, V. M. Vaisakh, and D. B. Mohan, Mater. Today Proc. 3, 2077 (2016).

    Article  Google Scholar 

  25. T. Sall, B. M. Soucase, M. Mollar, and J. A. Sans, J. Electron. Mater. 46, 1714 (2017).

    Article  ADS  Google Scholar 

  26. A. M. S. Arulanantham, S. Valanarasu, K. Jeyadheepan, V. Ganesh, and M. Shkir, J. Mol. Struct. 1152, 137 (2018).

    Article  ADS  Google Scholar 

  27. A. Voznyi, V. Kosak, L. Grase, J. Vecstaudza, P. Onufrijevs, Yu. Yeromenko, A. Medvid, and A. Opanasyak, Mater. Sci. Semicond. Process 79, 32 (2018).

    Article  Google Scholar 

  28. D. Das and R. Kumar Dutta, J. Colloid Interface Sci. 457, 339 (2015).

    Article  ADS  Google Scholar 

  29. G. Sreedevi, M. Vasudeva Reddy, C. Park, J. Chan-Wook, and K. T. Ramakrishna Reddy, Opt. Mater. 42, 468 (2015).

    Article  ADS  Google Scholar 

  30. G. Phaneendra Reddy, G. Sreedevi, and K. T. R. Reddy, Mater. Sci. Semicond. Process 86, 164 (2018).

    Article  Google Scholar 

  31. J. Osuntokun and P. A. Ajibade, Phys. B (Amsterdam, Neth.) 496, 106 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Ramakrishna Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P.M., Reddy, G.P. & Reddy, K.T. Effect of Deposition Time on Structural, Morphological and Optical Properties of PVA Capped SnS Films Grown by CBD Process. Semiconductors 53, 1745–1750 (2019). https://doi.org/10.1134/S1063782619130062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130062

Keywords:

Navigation