Skip to main content
Log in

Analysis of Al0.15Ga0.85N/GaN/Al0.15Ga0.85N DH-HEMT for RF and Microwave Frequency Applications

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A charge control based analytical model is followed to study the impact of donor-layer doping and gate-length on microwave frequency performance of AlGaN/GaN/AlGaN double heterostructure high electron mobility transistor (DH-HEMT). DH-HEMT is observed to be more sensitive to gate-length and doping variation as compared to single heterostructure high electron mobility transistor (SH-HEMT). The effect of gate-length and doping on various performance parameters, i.e., transconductance, drain conductance, cut-off frequency and maximum oscillation frequency has been analysed. The results so obtained are compared with simulation results and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. I. P. Smorchkova, S. Keller, S. Heikman, C. R. Elsass, B. Heying, P. Fini, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 77, 3998 (2000).

    Article  ADS  Google Scholar 

  2. K. Shinohara, D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. Robinson, H. H. Fung, A. Schmitz, T. C. Oh, S. J. Kim, P. S. Chen, R. G. Nagele, A. D. Margomenos, and M. Micovic, IEEE Trans. Electron Dev. 60, 2982 (2013).

    Article  ADS  Google Scholar 

  3. A. S. A. Fletcher and D. Nirmal, Superlatt. Microstruct. 109, 519 (2017).

    Article  ADS  Google Scholar 

  4. Y. Cai, Z. Cheng, Z. Yugang, and K. J. Chen, IEEE Electron. Dev. Lett. 53, 2207 (2006).

    Article  Google Scholar 

  5. L. Shen, S. Heikman, B. Moran, R. Coffie, N. Znanag, D. Buttari, I. P. Smorchkora, S. Keller, S. P. DenBars, and U. K. Mishra, IEEE Electron. Dev. Lett. 22, 457 (2001).

    Article  ADS  Google Scholar 

  6. Y. Ohno and M. Kuzuhera, IEEE Trans. Electron. Dev. 48, 517 (2001).

    Article  ADS  Google Scholar 

  7. L. Ravikiran, N. Dharmarasu, K. Radhakrishnan, M. Agrawal, L. Yiding, S. Arulkumaran, S. Vicknesh, and G. I. Ng, J. Appl. Phys. 117, 025301 (2015).

    Article  ADS  Google Scholar 

  8. Wei Hang Zhang, Jun Shuai Xue, Li Zhang, Tao Zhang, Zhi Yu Lin, Jin Cheng Zhang, and Yue Hao, Appl. Phys. Lett. 110, 252102 (2017).

    Article  ADS  Google Scholar 

  9. J. L. Cazaux, G. I. Ng, D. Pavlidis, and H. F. Chau, IEEE Trans. Electron Dev. 35, 1223 (1988).

    Article  ADS  Google Scholar 

  10. Ma Juncai, Z. Jincheng, X. Junshuai, Lin. Zhiyu, Liu Ziyang, Xue Xiao Yong, Ma Xiaohua, and Hao Yue, J. Semicond. 33, 014002 (2012).

    Article  Google Scholar 

  11. D. C. Yu and I. M. Abdel-Motaleb, Solid State Electron. 34, 467 (1991).

    Article  ADS  Google Scholar 

  12. A. Kamath, T. Patil, R. Adari, I. Bhattacharya, S. Ganguly, R. W. Aldhaheri, M. A. Hussain, and Dipankar Saha, IEEE Trans. Electron. Dev. 33, 1690 (2012).

    Article  Google Scholar 

  13. Jun Luo, Sheng-Lei Zhao, Min-Han Mi, Wei-Wei Chen, Bin Hou, Jin-Cheng Zhang, Xiao-Hua Ma, and Yue Hao, Chin. Phys. B 25, 027303 (2016).

    Article  ADS  Google Scholar 

  14. Lu Zhang, Xiaoliang Wang, Hongling Xiao, Hong Chen, Chun Feng, Guangdi Shen, Zhanguo Wang, and Xun Hou, Eur. Phys. J. Appl. Phys. 62, 20105 (2013).

    Article  ADS  Google Scholar 

  15. A. Bakar Khan, Dr. Mohammad Jawaid Siddiqui, and S. Gulraze Anjum, Mater. Today Proc. 4, 10341 (2017).

    Article  Google Scholar 

  16. N. Chugh, M. Bhattacharya, M. Kumar, S. S. Deswal, and R. S. Gupta, J. Comput. Electron. 17, 1229 (2018).

    Article  Google Scholar 

  17. N. Chugh, M. Kumar, M. Bhattacharya, and R. S. Gupta, Microsyst. Technol. (2019, in press). https://doi.org/10.1007/s00542-019-04322-5

  18. ATLAS 2D Device Simulator (Silvaco Int., 2016).

  19. R. K. Tyagi, A. Ahlawat, M. Pandey, and S. Pandey, Microelectron. J. 39, 1634 (2008).

    Article  Google Scholar 

  20. M. Bhattacharya, J. Jogi, R. S. Gupta, and M. Gupta, in Proceedings of ICSSA, Gujarat, India,2011, p. 497.

  21. S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. de Jaeger, M. Renvoise, and P. Frijlink, IEEE Electron Dev. Lett. 34, 36 (2013).

    Article  ADS  Google Scholar 

  22. S. P. Kumar, A. Agrawal, S. Kabra, M. Gupta, and R. S. Gupta, Microelectronics 37, 1339 (2006).

    Article  Google Scholar 

  23. O. Ambacher, J. Smart, J. R. Shealy, N. G. Wiemann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Defence Research and Development Organisation (DRDO), Ministry of Defence (Govt. of India) for providing the necessary financial assistance under the grant ERIP/P/ER/DG-Med and CoS/991115506/M/01/1663 to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisha Chugh, Manoj Kumar, Monika Bhattacharya or R. S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugh, N., Kumar, M., Bhattacharya, M. et al. Analysis of Al0.15Ga0.85N/GaN/Al0.15Ga0.85N DH-HEMT for RF and Microwave Frequency Applications. Semiconductors 53, 1784–1791 (2019). https://doi.org/10.1134/S1063782619130050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130050

Keywords:

Navigation