Skip to main content
Log in

Influence of Si-Doping on the Performance of InGaN/GaN Multiple Quantum Well Solar Cells

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The performance of InGaN/GaN multiple quantum well (MQW) solar cells with five different Si-doping concentrations, namely 0, 4 × 1017 cm–3, 1 × 1018 cm–3, 3 × 1018 cm–3 and 6 × 1018 cm–3, in GaN barriers is investigated. Increasing Si-doping concentration leads to better transport property, resulting in smaller series resistance (Rs). However, the crystal quality degrades when Si-doping concentration is over 1 × 1018 cm–3, which reduces the external quantum efficiency, short circuit current density and open circuit voltage. As a result, the sample with a slight Si-doping concentration of 4 × 1017 cm–3 exhibits the highest conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. David and M. J. Grundmann, Appl. Phys. Lett. 97, 033501 (2010).

    Article  ADS  Google Scholar 

  2. Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys. 42, 2549 (2003).

    Article  ADS  Google Scholar 

  3. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  ADS  Google Scholar 

  4. J. Q. Wu, J. Appl. Phys. 106, 011101 (2009).

    Article  ADS  Google Scholar 

  5. A. de Vos, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford Univ. Press, Oxford, 1992), p. 90.

    Google Scholar 

  6. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007).

    Article  ADS  Google Scholar 

  7. X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, Appl. Phys. Lett. 93, 261108 (2008).

    Article  ADS  Google Scholar 

  8. K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, Appl. Phys. Lett. 96, 081103 (2010).

    Article  ADS  Google Scholar 

  9. B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, IEEE Electron Dev. Lett. 31, 32 (2010).

    Article  ADS  Google Scholar 

  10. S. W. Zeng, X. M. Cai, and B. P. Zhang, IEEE J. Quantum Electron. 46, 783 (2010).

    Article  ADS  Google Scholar 

  11. R. Dahal, B. Pantha, J. Li, J. Y. Li, and H. X. Jiang, Appl. Phys. Lett. 98, 263504 (2011).

    Article  ADS  Google Scholar 

  12. C. C. Yang, J. K. Sheu, Xin-Wei Liang, Min-Shun Huang, M. L. Lee, K. H. Chang, S. J. Tu, Feng-Wen Huang, and W. C. Lai, Appl. Phys. Lett. 97, 021113 (2010).

    Article  ADS  Google Scholar 

  13. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. den Baars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 98, 201107 (2011).

    Article  ADS  Google Scholar 

  14. R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 97, 073115 (2010).

    Article  ADS  Google Scholar 

  15. P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lamber, and R. D. Dupuis, Appl. Phys. Lett. 71, 1537 (1997).

    Article  ADS  Google Scholar 

  16. J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang, and Y. K. Su, J. Appl. Phys. 91, 1845 (2002).

    Article  ADS  Google Scholar 

  17. S. Bindnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J. Song, S. Keller, U. J. Mishra, and S. P. den Barrs, Appl. Phys. Lett. 72, 1623 (1998).

    Article  ADS  Google Scholar 

  18. L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, IEEE J. Quantum Electron. 38, 446 (2002).

    Article  ADS  Google Scholar 

  19. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, IEEE Electron Dev. 23, 535 (2002).

    Article  ADS  Google Scholar 

  20. Ya-Ju Lee, Min-Hung Lee, Chun-Mao Cheng, and Chia-Hao Yang, Appl. Phys. Lett. 98, 263504 (2011).

    Article  ADS  Google Scholar 

  21. O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007).

    Article  ADS  Google Scholar 

  22. J. J. Wierer, Jr., D. D. Koleske, and S. R. Lee, Appl. Phys. Lett. 100, 111119 (2012).

    Article  ADS  Google Scholar 

  23. L. W. Sang, M. Takeguchi, W. Lee, Y. Nakayama, M. Lozach, T. Sekiguchi, and M. Sumiya, Appl. Phys. Express 3, 111004 (2010).

    Article  ADS  Google Scholar 

  24. Y. Kuwahara, T. Fujii, Y. Fujiyama, T. Sugiyama, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express 3, 111001 (2010).

    Article  ADS  Google Scholar 

  25. J. C. Rimada, L. Hernández, J. P. Connolly, and K. W. J. Barnham, Microelectron. J. 38, 513 (2007).

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China and Research Start-up Program of Xidian University (grant no. 10251180017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhao, B. & Li, S. Influence of Si-Doping on the Performance of InGaN/GaN Multiple Quantum Well Solar Cells. Semiconductors 53, 1792–1796 (2019). https://doi.org/10.1134/S1063782619130049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130049

Keywords:

Navigation