Skip to main content
Log in

Electronic and Optical Properties of Perovskite Quantum-Dot Dimer

  • QUANTUM WELLS AND QUANTUM DOTS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this work, we present a comprehensive theoretical modelling of a chiral dimer made of two perovskite quantum dots (QDs). Taking into account the bright triplet exciton of QDs, we calculate the energies of the dimer’s quantum states and analyze the dependence of these energies on the dimer geometry. We also compute the circular dichroism (CD) spectra of the dimer and establish the optimal dimer parameters for maximizing its CD response. Our results show that the perovskite QD dimers feature a strong and tunable chiroptical response, making these superstructures attractive for chiral application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, Materials 3, 2260 (2010).

    Article  ADS  Google Scholar 

  2. N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. C 120, 2379 (2016).

    Article  Google Scholar 

  3. N. V. Tepliakov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Express 24, A52 (2016).

    Article  ADS  Google Scholar 

  4. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, Chem. Rev. 110, 6873 (2010).

    Article  Google Scholar 

  5. X. Lan, S. Masala, and E. H. Sargent, Nat. Mater. 13, 233 (2014).

    Article  ADS  Google Scholar 

  6. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, Materials 3, 2260 (2010).

    Article  ADS  Google Scholar 

  7. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nat. Photon. 7, 13 (2013).

    Article  ADS  Google Scholar 

  8. E. Talgorn, R. D. Abellon, P. J. Kooyman, J. Piris, T. J. Savenije, A. Goossens, A. J. Houtepen, and L. D. Siebbeles, ACS Nano 4, 1723 (2010).

    Article  Google Scholar 

  9. I. A. Vovk, N. V. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Phys. Chem. Chem. Phys. 20, 25023 (2018).

    Article  Google Scholar 

  10. N. V. Tepliakov, I. A. Vovk, A. I. Shlykov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. C 123, 2658 (2019).

    Article  Google Scholar 

  11. X. Xu, S. Stöttinger, G. Battagliarin, G. Hinze, E. Mugnaioli, and C. Li, K. Müllen, and T. J. Basché, J. Am. Chem. Soc. 133, 18062 (2011).

    Article  Google Scholar 

  12. J. Liang, H. Luo, R. Beresford, and J. Xu, J. Appl. Phys. Lett. 85, 5974 (2004).

    Article  ADS  Google Scholar 

  13. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, Nature (London, U.K.) 483, 311 (2012).

    Article  ADS  Google Scholar 

  14. A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Chirality 29, 159 (2017).

    Article  Google Scholar 

  15. N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. Lett. 9, 2941 (2018).

    Article  Google Scholar 

  16. A. S. Baimuratov, T. P. Pereziabova, N. V. Tepliakov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Lett. 44, 499 (2019).

    Article  ADS  Google Scholar 

  17. N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Nanophotonics 5, 573 (2016).

    Article  Google Scholar 

  18. N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, ACS Nano 11, 7508 (2017).

    Article  Google Scholar 

  19. M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, and J. L. Lyons, and T. Stöferle, Nature (London, U.K.) 553, 189 (2018).

    Article  ADS  Google Scholar 

  20. Y. Tong, E. P. Yao, A. Manzi, E. Bladt, K. Wang, M. Döblinger, S. Bals, P. Müller-Buschbaum, A. S. Urban, L. Polavarapu, and J. Feldmann, Adv. Mater. 30, 1801117 (2018).

    Article  Google Scholar 

  21. I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 6, 36884 (2016).

    Article  ADS  Google Scholar 

  22. I. A. Vovk, N. V. Tepliakov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Opt. Soc. Am. A 34, 1940 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

The authors acknowledge the support from the Ministry of Science and Higher Education of the Russian Federation (14.Y26.31.0028, 16.8981.2017/8.9, SP-2066.2016.1) and the Russian Science Foundation (RSF) (18-13-00200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Tepliakov, I. A. Vovk, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov or I. D. Rukhlenko.

Ethics declarations

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepliakov, N.V., Vovk, I.A., Leonov, M.Y. et al. Electronic and Optical Properties of Perovskite Quantum-Dot Dimer. Semiconductors 53, 2158–2161 (2019). https://doi.org/10.1134/S1063782619120303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619120303

Keywords:

Navigation