Skip to main content
Log in

Observation of Intralayer and Interlayer Excitons in Monolayered WSe2/WS2 Heterostructure

  • QUANTUM WELLS AND QUANTUM DOTS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The atomically thin two-dimensional semiconductors of the material family of transition-metal dichalcogenides exhibit astonishing many-particle physics dominated by the formation of tightly bound planar-confined excitons due to strong in-plane Coulomb interaction. In addition to bright excitonic features, the presence of various dark excitonic states also has been experimentally observed very recently in this material family. In addition to that, a different type of exciton emerges when a van-der-Waals heterostructure is assembled by deterministically stacking two different monolayer TMDCs. Here, we demonstrate a WSe2/WS2 type-II heterostructure where the electrons transfer to the WS2 layer whereas the holes transfer to the WSe2 layer, thereby giving rise to interlayer excitons. The interlayer interaction depends on the coupling strength of the heterostructure which determines the luminescence spectrum. Such spectrum features contributions from individual layers as well as the heterobilayer configuration. These results and findings open new approaches for bandgap engineering using strongly hybridized bandstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  2. Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng,  S.-K. Mo, Z. Hussain, A. Bansil, and Z.-X. Shen, Nat. Nanotechnol. 9, 111 (2014).

    Article  ADS  Google Scholar 

  3. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).

    Article  ADS  Google Scholar 

  4. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  5. G. Berghäuser and E. Malic, Phys. Rev. B 89, 125309 (2014).

    Article  ADS  Google Scholar 

  6. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, Nano Lett. 17, 5229 (2017).

    Article  ADS  Google Scholar 

  7. U. Wurstbauer, B. Miller, E. Parzinger, and A. W. Holleitner, J. Phys. D. Appl. Phys. 50, 173001 (2017).

    Article  ADS  Google Scholar 

  8. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater. 12, 207 (2013).

    Article  ADS  Google Scholar 

  9. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012).

    Article  ADS  Google Scholar 

  10. A. Neumann, J. Lindlau, L. Colombier, M. Nutz, S. Najmaei, J. Lou, A. D. Mohite, H. Yamaguchi, and A. Hogele, Nat. Nanotechnol. 12, 329 (2017).

    Article  ADS  Google Scholar 

  11. X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, Phys. Rev. Lett. 115, 257403 (2015).

    Article  ADS  Google Scholar 

  12. M. R. Molas, C. Faugeras, A. O. Slobodeniuk, K. Nogajewski, M. Bartos, D. M. Basko, and M. Potemski, 2D Mater. 4, 021003 (2017).

  13. J. Lindlau, C. Robert, V. Funk, J. Forste, M. Forg, L. Colombier, A. Neumann, E. Courtade, S. Shree, T. Taniguchi, K. Watanabe, M. M. Glazov, X. Marie, B. Urbaszek, and A. Högele, arXiv: 1710.00988 (2017).

  14. G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T. Amand, D. Lagarde, T. Taniguchi, K. Watanabe, B. Urbaszek, and X. Marie, Phys. Rev. Lett. 119, 047401 (2017).

    Article  ADS  Google Scholar 

  15. J. P. Echeverry, B. Urbaszek, T. Amand, X. Marie, and I. C. Gerber, Phys. Rev. B 93, 121107 (2016).

    Article  ADS  Google Scholar 

  16. X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, Nat. Nanotechnol. 12, 883 (2017).

    Article  ADS  Google Scholar 

  17. S.-Y. Chen, T. Goldstein, T. Taniguchi, K. Watanabe, and J. Yan, Nat. Commun. 9, 3717 (2018).

    Article  ADS  Google Scholar 

  18. Y. Y. Lee, Z. Hu, X. Wang, and C.-H. Sow, ACS Appl. Mater. Interfaces 10, 37396 (2018).

    Article  Google Scholar 

  19. C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, Nature (London, U.K.) 567, 76 (2019).

    Article  ADS  Google Scholar 

  20. K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. Quan, A. Singh, J. Embley, A. Zepeda, M. Campbell, T. Autry, T. Taniguchi, et al., Nature (London, U.K.) 567, 71 (2019).

    Article  ADS  Google Scholar 

  21. E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, M. R. Molas, M. Koperski, K. Watanabe, T. Taniguchi, K. S. Novoselov, R. V. Gorbachev, H. S. Shin, V. I. Fal’ko, and A. I. Tartakovskii, Nature (London, U.K.) 567, 81 (2019).

    Article  ADS  Google Scholar 

  22. K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, Nature (London, U.K.) 567, 66 (2019).

    Article  ADS  Google Scholar 

  23. N. Zhang, A. Surrente, M. Baranowski, D. K. Maude, P. Gant, A. Castellanos-Gomez, and P. Plochocka, Nano Lett. 18, 7651 (2018).

    Article  ADS  Google Scholar 

  24. H. Terrones, F. López-Urías, and M. Terrones, Sci. Rep. 3, 1549 (2013).

    Article  ADS  Google Scholar 

  25. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, Nat. Photon. 9, 733 (2015).

    Article  ADS  Google Scholar 

  26. H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, Nano Lett. 15, 709 (2015).

    Article  ADS  Google Scholar 

  27. K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, ACS Nano 10, 6612 (2016).

    Article  Google Scholar 

  28. L. M. Schneider, S. Lippert, J. Kuhnert, D. Renaud, K. N. Kang, O. Ajayi, M.-U. Halbich, O. M. Abdulmunem, X. Lin, K. Hassoon, S. Edalati-Boostan, Y. D. Kim, W. Heimbrodt, E. H. Yang, J. C. Hone, and A. Rahimi-Iman, Semiconductors 52, 499 (2018).

    Article  Google Scholar 

  29. S. Lippert, L. M. Schneider, D. Renaud, K. N. Kang, O. Ajayi, J. Kuhnert, M.-U. Halbich, O. M. Abdulmunem, X. Lin, K. Hassoon, S. Edalati-Boostan, Y. D. Kim, W. Heimbrodt, E.-H. Yang, J. C. Hone, and A. Rahimi-Iman, 2D Mater. 4, 025045 (2017).

  30. C. K. Safeer, J. Ingla-Aynés, F. Herling, J. H. Garcia, M. Vila, N. Ontoso, M. R. Calvo, S. Roche, L. E. Hueso, and F. Casanova, Nano Lett. 19, 1074 (2019).

    Article  ADS  Google Scholar 

  31. A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, Appl. Phys. Lett. 96, 213116 (2010).

    Article  ADS  Google Scholar 

  32. A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, Nat. Commun. 8, 15251 (2017).

    Article  ADS  Google Scholar 

  33. S. Latini, K. T. Winther, T. Olsen, and K. S. Thygesen, Nano Lett. 17, 938 (2017).

    Article  ADS  Google Scholar 

  34. L. M. Schneider, S. Lippert, J. Kuhnert, O. Ajayi, D. Renaud, S. Firoozabadi, Q. Ngo, R. Guo, Y. D. Kim, W. Heimbrodt, J. C. Hone, and A. Rahimi-Iman, Nano-Struct. Nano-Objects 15, 84 (2018).

    Article  Google Scholar 

  35. D. Van Tuan, B. Scharf, Z. Wang, J. Shan, K. F. Mak, I. Žutić, and H. Dery, Phys. Rev. B 99, 085301 (2019).

    Article  ADS  Google Scholar 

  36. L. Meckbach, T. Stroucken, and S. W. Koch, Phys. Rev. B 97, 035425 (2018).

    Article  ADS  Google Scholar 

  37. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2013).

    Article  Google Scholar 

  38. D. Christiansen, M. Selig, G. Berghäuser, R. Schmidt, I. Niehues, R. Schneider, A. Arora, S. M. de Vasconcellos, R. Bratschitsch, E. Malic, and A. Knorr, Phys. Rev. Lett. 119, 187402 (2017).

    Article  ADS  Google Scholar 

  39. A. Stuart, M. G. Kendall, et al., The Advanced Theory of Statistics (Griffin, 1963).

    MATH  Google Scholar 

  40. J. Lindlau, M. Selig, A. Neumann, L. Colombier, J. Förste, V. Funk, M. Forg, J. Kim, G. Berghäuser, T. Taniguchi, K. Watanabe, F. Wang, E. Malic, and A. Hogele, Nat. Commun. 9, 2586 (2018).

    Article  ADS  Google Scholar 

  41. J. Zhang, J. Wang, P. Chen, Y. Sun, S. Wu, Z. Jia, X. Lu, H. Yu, W. Chen, J. Zhu, G. Xie, R. Yang, D. Shi, X. Xu, J. Xiang, K. Liu, and G. Zhang, Adv. Mater. 28, 1950 (2016).

    Article  Google Scholar 

  42. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, Nanoscale 7, 10421 (2015).

    Article  ADS  Google Scholar 

  43. E. Malic, M. Selig, M. Feierabend, S. Brem, D. Christiansen, F. Wendler, A. Knorr, and G. Berghäuser, Phys. Rev. Mater. 2, 014002 (2018).

    Article  Google Scholar 

  44. S. Brem, A. Ekman, D. Christiansen, F. Katsch, M. Selig, C. Robert, X. Marie, B. Urbaszek, A. Knorr, and E. Malic, arXiv: 1904.04711 (2019).

  45. S. Brem, M. Selig, G. Berghaeuser, and E. Malic, Sci. Rep. 8, 8238 (2018).

    Article  ADS  Google Scholar 

  46. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, Nano Lett. 14, 3185 (2014).

    Article  ADS  Google Scholar 

  47. J. Kunstmann, F. Mooshammer, P. Nagler, A. Chaves, F. Stein, N. Paradiso, G. Plechinger, C. Strunk, C. Schüller, G. Seifert, D. R. Reichman, and T. Korn, Nat. Phys. 14, 801 (2018).

    Article  Google Scholar 

  48. A. T. Hanbicki, H.-J. Chuang, M. R. Rosenberger, C. S. Hellberg, S. V. Sivaram, K. M. McCreary, I. I. Ma-zin, and B. T. Jonker, ACS Nano 12, 4719 (2018).

    Article  Google Scholar 

Download references

Funding

The authors acknowledge financial support by the Philipps-Universität Marburg and the German Research Foundation (DFG: SFB1083 and RA 2841/5-1). The authors thank G. Witte and T. Lapp for assistance with AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shah, L. M. Schneider or A. Rahimi-Iman.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Schneider, L.M. & Rahimi-Iman, A. Observation of Intralayer and Interlayer Excitons in Monolayered WSe2/WS2 Heterostructure. Semiconductors 53, 2140–2146 (2019). https://doi.org/10.1134/S1063782619120273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619120273

Keywords:

Navigation