Skip to main content
Log in

Probability Density Operator and Darwin Term in ID Spinless Semi-Relativistic System

  • QUANTUM WELLS AND QUANTUM DOTS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We derive one-electron/hole probability density in ID semi-relativistic system within quantum field approach, considered as an alternative to Foldy-Wouthuysen transformation. We propose to consider single wall semiconductor carbon nanotube as the physical realization of such ID system. Application of Bogoluybov transformation to nanotube two-band Dirac-like k·p Hamiltonian predicts the additional smearing of position probability density as regards common quantum mechanical smearing, described by the square of wave function. It is shown, that under application of external potential, the revealed difference causes arising of non-local Darwin-like terms in the one-component Salpeter equations, describing separately positive and negative energy states. It is shown within proposed approach that the predicted peculiarity of defined probability density is due to unusual behavior of position operator in multi band k·p problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Weinberg, The Quantum Theory of Fields (Cambridge Univ. Press, New York, 1995).

    Book  Google Scholar 

  2. Carbon Nanotubes, Ed. by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2001); Physical Properties of Carbon Nanotubes, Ed. by R. Saito, G. Dresselhaus, and M. S. Dresselhaus (Imperial College Press, London, 1999).

  3. W. Zawadzki, Phys. Rev. B 74, 205439 (2006).

    Article  ADS  Google Scholar 

  4. E. P. Wigner, Z. Phys. 133, 101 (1952);

    Article  ADS  Google Scholar 

  5. G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Dixit, Y. Hinschberger, J. Zamanian, G. Manfredi, and P.-A. Hervieux, Phys. Rev. A 88, 032117 (2013).

    Article  ADS  Google Scholar 

  7. K. Kowalski and J. Rembielinski, Phys. Rev. A 84, 012108 (2011).

    Article  ADS  Google Scholar 

  8. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevski, Relativistic Quantum Theory (Pergamon, Oxford, 1971).

    Google Scholar 

  9. T. M. Rusin and W. Zawadzki, Phys. Rev. A 84, 062124 (2011);

    Article  ADS  Google Scholar 

  10. W. Zawadzki, Phys. Rev. B 72, 085217 (2005).

    Article  ADS  Google Scholar 

  11. W. Zawadzki, Phys. Rev. B 74, 205439 (2006).

    Article  ADS  Google Scholar 

  12. R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

    Article  ADS  Google Scholar 

  13. Q. Z. Lv, Y. T. Li, Q. Su, and R. Grobe, Phys. Rev. A 95, 022128 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation within the framework of the State Task Program (project 3.6115.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Rumyantsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, E.L., Kunavin, P.E. & Germanenko, A.V. Probability Density Operator and Darwin Term in ID Spinless Semi-Relativistic System. Semiconductors 53, 2147–2150 (2019). https://doi.org/10.1134/S1063782619120248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619120248

Keywords:

Navigation