Skip to main content
Log in

Two Dimensional Bright and Dark Magnetoexcitons Interacting with Quantum Point Vortices

  • EXCITONS IN NANOSTRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The theory of the two-dimensional (2D) magnetoexcitons was enlarged in two aspects. One of them takes into account the electron-hole (e–h) exchange Coulomb interaction, which appears when the conduction and the valence electrons belong partially to both bands. The exchange Coulomb interaction gives rise to the Dirac cone dispersion law in the range of small in-plane wave vectors k|| obeying to the condition |k|||l0 < 1, where l0 is the magnetic length. Such dispersion law may change essentially the properties of the high density magnetoexcitons opening the possibility of their Bose-Einstein condensation at different from zero temperatures [1]. Another aspect concerns the high density magnetoexcitons with fractional filling factors in conditions of fractional quantum Hall effects. The Chern-Simons gauge field was introduced into the Hamiltonian of the 2D coplanar e–h system by the unitary transformation. It gives rise to the additional gauge vector potential, the influence of which leads to the anisotropic corrections to the magnetoexciton magnetic mass [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons and Coherent Honlinear Optics with Excitons (Cambridge Univ. Press, New York, 2000).

    Book  Google Scholar 

  2. S. A. Moskalenko, V. A. Moskalenko, P. I. Khadzhi, I. V. Podlesny, M. A. Liberman and I. A. Zubac, Mold. J. Phys. Sci. 17, 52 (2018).

    Google Scholar 

  3. S. A. Moskalenko, V. A. Moskalenko, P. I. Khadzhi, I. V. Podlesny, M. A. Liberman, and I. A. Zubac, in Abstracts of the 9th International Conference on Materials Science and Condensed Matter Physics, Chisinau, Moldova, Sept. 25–28,2018, p. 27; S. A. Moskalenko, I. V. Podlesny, I. A. Zubac, and B. V. Novikov, Solid State Commun. (in press).

  4. D. Paquet, T. M. Rice, and K. Ueda, Phys. Rev. B 32, 5208 (1985). https://doi.org/10.1103/PhysRevB.32.5208

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Moscow, Fizmatgiz, 1963; Pergamon, New York, 1977), p. 169.

  6. Yu Hongyi, Liu Gui-Bin, Gong Pu, Xu Xiaodong, and Yao Wang, Nat. Commun. 5, 3876 (2014). https://doi.org/10.1038/ncomms4876

    Article  ADS  Google Scholar 

  7. A. Kogar, M. S. Rak, et al., Science (Washington, DC, U. S.) 358, 1314 (2017). https://doi.org/10.1126/science.aam6432

    Article  ADS  Google Scholar 

  8. S. A. Moskalenco, M. A. Liberman, D. W. Snoke, and V. V. Botan, Phys. Rev. B 66, 245316 (2002). https://doi.org/10.1103/PhysRevB.66.245316

    Article  ADS  Google Scholar 

  9. H. L. Stormer, Rev. Mod. Phys. 71, 875 (1999). https://doi.org/10.1103/RevModPhys.71.875

    Article  ADS  Google Scholar 

  10. F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982). https://doi.org/10.1103/PhysRevLett.48.1144

    Article  ADS  Google Scholar 

  11. F. Wilczek, Phys. Rev. Lett. 49, 957 (1982). https://doi.org/10.1103/PhysRevLett.49.957

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Read, Phys. Rev. B 58, 16262 (1998). https://doi.org/10.1103/PhysRevB.58.16262

    Article  ADS  Google Scholar 

  13. B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993). https://doi.org/10.1103/PhysRevB.47.7312

    Article  ADS  Google Scholar 

  14. R. Jackiw and So-Young Pi, Phys. Rev. D 42, 3500 (1990). https://doi.org/10.1103/PhysRevD.42.3500

    Article  ADS  MathSciNet  Google Scholar 

  15. S. A. Moskalenco and V. A. Moskalenco, Mold. J. Phys. Sci. 17, 41 (2018).

    Google Scholar 

Download references

Funding

This work was performed in the frame of the institutional project no. 15.817.02.05F of the Institute of Applied Physics, Republic of Moldova.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Moskalenko or I. A. Zubac.

Ethics declarations

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalenko, S.A., Moskalenko, V.A., Podlesny, I.V. et al. Two Dimensional Bright and Dark Magnetoexcitons Interacting with Quantum Point Vortices. Semiconductors 53, 2055–2059 (2019). https://doi.org/10.1134/S1063782619120182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619120182

Keywords:

Navigation