Skip to main content
Log in

On the Suppression of Electron-Hole Exchange Interaction in a Reservoir of Nonradiative Excitons

  • XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Mechanisms of the suppression of the electron-hole exchange interaction in nonradiative excitons with a large in-plane wave vector in high-quality heterostructures with quantum wells are analyzed theoretically. It is shown that the dominant suppression mechanism is exciton-exciton scattering accompanied by the mutual spin flips of like carriers (either two electrons or two holes), comprising the excitons. As a result, the electron spin polarization in nonradiative excitons may be retained for a long time. The analysis of experimental data shows that this relaxation time can exceed one nanosecond. This long-term and optically controllable spin memory in an exciton reservoir may be of interest for future information technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. V. Trifonov, S. N. Korotan, A. S. Kurdyubov, I. Ya. Gerlovin, I. V. Ignatiev, Yu. P. Efimov, S. A. Eliseev, V. V. Petrov, Yu. K. Dolgikh, V. V. Ovsyankin, and A. V. Kavokin, Phys. Rev. B 91, 115307 (2015).

    ADS  Google Scholar 

  2. A. V. Trifonov, E. S. Khramtsov, K. V. Kavokin, I. V. Ignatiev, A. V. Kavokin, Y. P. Efimov, S. A. Eliseev, P. Yu. Shapochkin, and M. Bayer, Phys. Rev. Lett. 122, 147401 (2019).

  3. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Springer, Berlin, 2004).

    Google Scholar 

  4. E. S. Khramtsov, P. A. Belov, P. S. Grigoryev, I. V. Ignatiev, S. Yu. Verbin, Yu. P. Efimov, S. A. Eliseev, V. A. Lovtcius, V. V. Petrov, and S. L. Yakovlev, J. Appl. Phys. 119, 184301 (2016).

    ADS  Google Scholar 

  5. P. S. Grigoryev, A. S. Kurdyubov, M. S. Kuznetsova, I. V. Ignatiev, Yu. P. Efimov, S. A. Eliseev, V. V. Petrov, V. A. Lovt’cius, and P. Yu. Shapochkin, Superlatt. Microstruct. 97, 452 (2016).

    ADS  Google Scholar 

  6. E. S. Khramtsov, P. S. Grigoryev, D. K. Loginov, I. V. Ignatiev, Yu. P. Efimov, S. A. Eliseev, P. Yu. Shapochkin, E. L. Ivchenko, and M. Bayer, Phys. Rev. B 99, 035431 (2019).

    ADS  Google Scholar 

  7. I. A. Yugova, A. Greilich, D. R. Yakovlev, A. A. Kiselev, M. Bayer, V. V. Petrov, Yu. K. Dolgikh, D. Reuter, and A. D. Wieck, Phys. Rev. B 75, 245302 (2007).

    ADS  Google Scholar 

  8. M. Dyakonov, X. Marie, T. Amand, P. le Jeune, D. Robart, M. Brousseau, and J. Barrau, Phys. Rev. B 56, 10412 (1997).

    ADS  Google Scholar 

  9. R. T. Harley, A. Balocchi, and T. Amand, in Spin Physics in Semiconductors, Ed. by M. I. Dyakonov, 2nd ed. (Springer, 2017), Chap. 2, p. 59.

    Google Scholar 

  10. A. Abragam, The Principle of Nuclear Magnetism (Clarendon, Oxford 1961).

    Google Scholar 

  11. M. I. Dyakonov, in Spin Physics in Semiconductors, Ed. by M. I. Dyakonov, 2nd ed. (Springer, 2017), Chap. 1, p. 21.

    Google Scholar 

  12. I. Ya. Gerlovin, Yu. K. Dolgikh, S. A. Eliseev, V. V. Ovsyankin, Yu. P. Efimov, V. V. Petrov, I. V. Ignatiev, I. E. Kozin, and Y. Masumoto, Phys. Rev. B 65, 035317 (2001).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Russian Science Foundation for financial support, grant no. 19-72-20039, as well as the Resource Center “Nanophotonics” for the sample studied in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ignatiev.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonov, A.V., Ignatiev, I.V., Kavokin, K.V. et al. On the Suppression of Electron-Hole Exchange Interaction in a Reservoir of Nonradiative Excitons. Semiconductors 53, 1170–1174 (2019). https://doi.org/10.1134/S1063782619090239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619090239

Keywords:

Navigation