Skip to main content
Log in

Sensing Amorphous/Crystalline Silicon Surface Passivation by Attenuated Total Reflection Infrared Spectroscopy of Amorphous Silicon on Glass

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy and effective lifetime measurements have been used to characterize amorphous/crystalline silicon surface passivation in silicon heterojunction solar cells. The comparative studies show a strong link between microstructure factor R* and effective lifetime of amorphous silicon (a-Si:H) passivation layers incorporating an interface buffer layer, which prevents the epitaxial growth. It is demonstrated that thin a-Si:H films deposited on glass can be used as ATR substrates in this case. The obtained results show that a-Si:H films with R* close to 0.1 are required for manufacturing of high-efficiency (>23%) silicon heterojunction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Lev, J. Hohl-Ebinger, and A. W. H. Ho-Baillie, Prog. Photovolt. 25, 668 (2017).

    Article  Google Scholar 

  2. C. Battaglia, A. Cuevas, and S. de Wolf, Energy Environ. Sci. 9, 1552 (2016).

    Article  Google Scholar 

  3. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishikawa, K. Fujita, and E. Maruyama, IEEE J. Photovolt. 4, 1433 (2014).

    Article  Google Scholar 

  4. S. de Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, Green 2, 7 (2012).

    Article  Google Scholar 

  5. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  6. A. G. Aberle, Prog. Photovolt. 8, 473 (2000).

    Article  Google Scholar 

  7. M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, 3556 (1977).

    Article  ADS  Google Scholar 

  8. G. Lucovsky, R. J. Nemanich, and J. C. Knights, Phys. Rev. B 19, 2064 (1979).

    Article  ADS  Google Scholar 

  9. Y. J. Chabal, Surf. Sci. Rep. 8, 211 (1988).

    Article  ADS  Google Scholar 

  10. Y. J. Chabal, G. S. Higashi, K. Raghavachari, and V. A. Burrows, J. Vac. Sci. Technol. A 7, 2104 (1989).

    Article  ADS  Google Scholar 

  11. S. Miyazaki, Y. Yoshida, Y. Miyoshi, and M. Hirose, Sol. Energy Mater. Sol. Cells 49, 45 (1997).

    Article  Google Scholar 

  12. H. Fujiwara, Y. Toyoshima, M. Kondo, and A. Matsuda, Phys. Rev. B 60, 13598 (1999).

    Article  ADS  Google Scholar 

  13. J. J. H. Gielis, P. J. van den Oever, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 90, 202108 (2007).

    Article  ADS  Google Scholar 

  14. J. J. H. Gielis, B. Hoex, P. J. van den Oever, M. C. M. van de Sanden, and W. M. M. Kessels, Thin Solid Films 517, 3456 (2009).

    Article  ADS  Google Scholar 

  15. H. Fujiwara and M. Kondo, Appl. Phys. Lett. 86, 032112 (2005).

    Article  ADS  Google Scholar 

  16. J. Holovský, S. de Wolf, P. Jiřĺček, and C. Ballif, Rev. Sci. Instrum. 86, 073108 (2015).

    Article  ADS  Google Scholar 

  17. M. Z. Burrows, U. K. Das, R. L. Opila, S. de Wolf, and R. W. Birkmire, J. Vac. Sci. Technol. A 26, 683 (2008).

    Article  Google Scholar 

  18. S. Abolmasov et al., in Proceedings of the 31th European Photovoltaic Solar Energy Conference (Hamburg, Germany, 2015), p. 1046.

  19. D. Andronikov et al., in Proceedings of the 33rd European Photovoltaic Solar Energy Conference (Amsterdam, Netherlands, 2017), p. 732.

  20. R. Kitamura, L. Pilon, and M. Jonasz, Appl. Opt. 46, 8118 (2007).

    Article  ADS  Google Scholar 

  21. M. M. Pradhan, R. K. Garg, and M. Arora, Infrared Phys. 27, 25 (1987).

    Article  ADS  Google Scholar 

  22. A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Phys. Rev. B 45, 13367 (1992).

    Article  ADS  Google Scholar 

  23. H. Fujiwara, T. Kaneko, and M. Kondo, Sol. Energy Mater. Sol. Cells 93, 725 (2009).

    Article  Google Scholar 

  24. Y. Zhang et al., Chin. Phys. Lett. 34, 038101 (2017).

    Article  ADS  Google Scholar 

  25. P. Roca i Cabarrocas et al., J. Phys. I, EDP Sci. 2, 1979 (1992).

  26. R. Ossikovski and B. Drevillon, Phys. Rev. B 54, 10530 (1996).

    Article  ADS  Google Scholar 

  27. H. Fujiwara and M. Kondo, Appl. Phys. Lett. 90, 013503 (2007).

    Article  ADS  Google Scholar 

  28. A. Shah, Thin-Film Silicon Solar Cells, 1st ed. (EPFL Press, Lausanne, 2010), p. 35.

    Book  Google Scholar 

  29. H. Meddeb, T. Bearda, Y. Abdelraheem, H. Ezzaouia, I. Gordon, J. Szlufcik, and J. Poortmans, J. Phys. D: Appl. Phys. 48, 415301 (2015).

    Article  ADS  Google Scholar 

  30. A. Descoeudres, L. Barraud, R. Bartlone, G. Choong, S. de Wolf, F. Zicarelli, and C. Ballif, Appl. Phys. Lett. 97, 183505 (2010).

    Article  ADS  Google Scholar 

  31. B. Strahm, A. A. Howling, L. Sansonnens, and Ch. Hollenstein, Plasma Sources Sci. Technol. 16, 80 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Abolmasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolmasov, S.N., Abramov, A.S., Semenov, A.V. et al. Sensing Amorphous/Crystalline Silicon Surface Passivation by Attenuated Total Reflection Infrared Spectroscopy of Amorphous Silicon on Glass. Semiconductors 53, 1114–1119 (2019). https://doi.org/10.1134/S1063782619080244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619080244

Navigation