Skip to main content
Log in

Template Synthesis of Monodisperse Submicrometer Spherical Nanoporous Silicon Particles

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Monodisperse spherical nanoporous silicon (np-Si) particles of submicrometer size are fabricated with mesoporous silica particles as a template. Silicon is synthesized within the mesopores of monodisperse silica particles by the thermal decomposition of monosilane. Then, the template material (a-SiO2) is removed by wet etching. The particles obtained have a small root-mean-square size scatter (no more than 10%) and large specific surface area (250 m2 g–1) and pore volume (0.5 cm3 g–1). It is shown that np-Si particles exhibit photoluminescence in the visible and near-IR (infrared) spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).

    Article  ADS  Google Scholar 

  2. Q. Shabir, A. Pokale, A. Loni, D. R. Johnson, L. T. Canham, R. Fenollosa, M. Tymczenko, I. Rodríguez, F. Meseguer, A. Cros, and A. Cantarero, Silicon 3, 173 (2011).

    Article  Google Scholar 

  3. H. A. Santos, Porous Silicon for Biomedical Applications (Elsevier, Amsterdam, 2014).

    Google Scholar 

  4. J. G. Croissant, Y. Fatieiev, and N. M. Khashab, Adv. Mater. 29, 1604634 (2017).

    Article  Google Scholar 

  5. L. Canham, Properties of Porous Silicon (INSPEC/IEE, London, 1997).

    Google Scholar 

  6. R. Anthony and U. Kortshagen, Phys. Rev. B 80, 115407 (2009).

    Article  ADS  Google Scholar 

  7. R. Mazzaro, F. Romano, and P. Ceroni, Phys. Chem. Chem. Phys. 19, 26507 (2017).

    Article  Google Scholar 

  8. B. Bruhn, B. J. M. Brenny, S. Dekker, I. Doğan, P. Schall, and K. Dohnalová, Light: Sci. Appl. 6, e17007 (2017).

    Article  Google Scholar 

  9. E. J. Anglin, L. Cheng, W. R. Freeman, and M. J. Sailor, Adv. Drug. Deliv. Rev. 60, 1266 (2008).

    Article  Google Scholar 

  10. J. Salonen,  A. M. Kaukonen,  J. Hirvonen,  and  V.-P. Lehto, J. Pharm. Sci. 97, 632 (2008).

    Article  Google Scholar 

  11. D. S. Kumar, D. Banji, B. Madhavi, V. Bodanapu, S. Dondapati, and A. P. Sri, Int. J. Pharm. Pharm. Sci. 1, 8 (2009).

    Google Scholar 

  12. R. J. Martĭn-Palma, M. Manso-Silván, and V. Torres-Costa, J. Nanophoton. 4, 042502 (2010).

  13. H. A. Santos, E. Mäkilä, A. J. Airaksinen, L. M. Bimbo, and J. Hirvonen, Nanomedicine 9, 535 (2014).

    Article  Google Scholar 

  14. V. Stojanovic, F. Cunin, J. O. Durand, M. Garcia, and M. Gary-Bobo, J. Mater. Chem. B 4, 7050 (2016).

    Article  Google Scholar 

  15. Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, and D. E. Discher, Nat. Nanotechnol. 2, 249 (2007).

    Article  ADS  Google Scholar 

  16. S. Rahmani, J.-O. Durand, C. Charnay, L. Lichon, M. Férid, M. Garcia, and M. Gary-Bobo, Solid State Sci. 68, 25 (2017).

    Article  ADS  Google Scholar 

  17. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, J. A. Kukushkina, V. V. Sokolov, M. A. Yagovkina, and V. G. Golubev, Microporous Mesoporous Mater. 223, 225 (2016).

    Article  Google Scholar 

  18. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, V. V. Sokolov, and V. G. Golubev, Microporous Mesoporous Mater. 258, 205 (2018).

    Article  Google Scholar 

  19. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, S. A. Yakovlev, D. A. Kirilenko, and V. G. Golubev, Phys. Solid State 56, 1033 (2014).

    Article  ADS  Google Scholar 

  20. D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).

    Article  ADS  Google Scholar 

  21. E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigorev, V. V. Romanov, D. R. Yakovlev, and V. G. Golubev, Phys. Solid State 59, 1623 (2017).

    Article  ADS  Google Scholar 

  22. E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, D. R. Yakovlev, and V. G. Golubev, Semiconductors 52, 1123 (2018).

    Article  ADS  Google Scholar 

  23. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).

    Article  ADS  Google Scholar 

  24. D. A. Kurdyukov, D. A. Eurov, M. K. Rabchinskii, A. V. Shvidchenko, M. V. Baidakova, D. A. Kirilenko, S. V. Koniakhin, V. V. Shnitov, V. V. Sokolov, P. N. Brunkov, A. T. Dideikin, Ye. M. Sgibnev, L. Yu. Mironov, D. A. Smirnov, A. Ya. Vul’, and V. G. Golubev, Nanoscale 10, 13223 (2018).

    Article  Google Scholar 

  25. E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37, 378 (2011).

    Article  Google Scholar 

  26. E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).

    Article  ADS  Google Scholar 

  27. V. N. Bogomolov, V. G. Golubev, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, A. V. Prokof’ev, V. V. Ratnikov, N. A. Feoktistov, and N. V. Sharenkova, Tech. Phys. Lett. 24, 326 (1998).

    Article  ADS  Google Scholar 

  28. N. A. Feoktistov, V. G. Golubev, J. L. Hutchison, D. A. Kurduykov, A. B. Pevtsov, V. V. Ratnikov, J. Sloan, and L. M. Sorokin, Semicond. Sci. Technol. 16, 955 (2001).

    Article  ADS  Google Scholar 

  29. V. N. Bogomolov, N. A. Feoktistov, V. G. Golubev, J. L. Hutchison, D. A. Kurdyukov, A. B. Pevtsov, R. Schwarz,  J. Sloan, and L. M. Sorokin, J. Non-Cryst. Solids 266–269, 1021 (2000).

    Article  Google Scholar 

  30. A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, J. Appl. Phys. 78, 6999 (1995).

    Article  ADS  Google Scholar 

  31. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, G. Compagnini, S. Battiato, R. Puglisi, and S. La Rosa, Eur. Phys. J. B 46, 457 (2005).

    Article  ADS  Google Scholar 

  32. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, Phys. Rev. B 73, 033307 (2006).

    Article  ADS  Google Scholar 

  33. S. K. Gupta and P. K. Jha, Solid State Commun. 149, 1989 (2009).

    Article  ADS  Google Scholar 

  34. X. Jia, Z. Lin, T. Zhang, B. Puthen-Veettil, T. Yang, K. Nomoto, J. Ding, G. Conibeer, and I. Perez-Wurfl, RSC Adv. 7, 34244 (2017).

  35. A. B. Pevtsov, V. Yu. Davydov, N. A. Feoktistov, and V. G. Karpov, Phys. Rev. B 52, 955 (1995).

    Article  ADS  Google Scholar 

  36. V. G. Golubev, V. Yu. Davydov, A. V. Medvedev, A. B. Pevtsov, and N. A. Feoktistov, Phys. Solid State 39, 1197 (1997).

    Article  ADS  Google Scholar 

  37. V. Y. Timoshenko, K. A. Gonchar, I. V. Mirgorodskiy, N. E. Maslova, V. E. Nikulin, G. K. Mussabek, Y. T. Taurbaev, E. A. Svanbayev, and T. I. Taurbaev, Nanoscale Res. Lett. 6, 349 (2011).

    Article  ADS  Google Scholar 

  38. I. Doğan and M. C. M. van de Sanden, J. Appl. Phys. 114, 134310 (2013).

    Article  ADS  Google Scholar 

  39. Y. Kanzawa, T. Kageyama, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Solid State Commun. 102, 533 (1997).

    Article  ADS  Google Scholar 

  40. M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, and J. Jedrzejewski, Eur. Phys. J. Appl. Phys. 27, 285 (2004).

    Article  ADS  Google Scholar 

  41. E. Tuğay and R. Turan, J. Nanosci. Nanotechnol. 16, 4052 (2016).

    Article  Google Scholar 

  42. Z. Remes, J. Stolchík, A. Purkrt, M. Ledinský, and J. Kupčík, Ceram.-Silikaty 61, 136 (2017).

    Google Scholar 

  43. A. M. Smith, M. C. Mancini, and S. Nie, Nat. Nanotechnol. 4, 710 (2009).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The TEM study was carried out on equipment of the Federal Collective Use Center “Materials Science and Diagnostics in advanced technologies.”

Funding

The study was carried out with State Budget financing under State assignment no. 0040-2019–0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kurdyukov.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdyukov, D.A., Feoktistov, N.A., Kirilenko, D.A. et al. Template Synthesis of Monodisperse Submicrometer Spherical Nanoporous Silicon Particles. Semiconductors 53, 1048–1053 (2019). https://doi.org/10.1134/S106378261908013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261908013X

Keywords:

Navigation