Skip to main content
Log in

Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH4)2S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH4)2S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH4)2S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. S. Dutta, H. L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997).

    Article  ADS  Google Scholar 

  2. A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennet, J. B. Boos, Y. Nishi, and C. C. Saraswat, IEEE Trans. Electron Dev. 58, 3407 (2011).

    Article  ADS  Google Scholar 

  3. A. W. Dey, B. M. Borg, B. Ganjipour, M. Ek, K. A. Dick, E. Lind, C. Thelander, and L.-E. Wernersson, IEEE Electron Dev. Lett. 34, 211 (2013).

    Article  ADS  Google Scholar 

  4. H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, IEEE J. Quantum. Electron. 35, 1041 (1999).

    Article  ADS  Google Scholar 

  5. R. Rehm, M. Masur, J. Schmitz, V. Daumer, J. Niemasz, T. Vandervelde, D. DeMeo, W. Luppold, M. Wauro, A. Wörl, F. Rutz, R. Scheibner, J. Ziegler, and M. Walther, Infrared Phys. Technol. 59, 6 (2013).

    Article  ADS  Google Scholar 

  6. A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017).

    Article  ADS  Google Scholar 

  7. H. Xie, J. Piao, J. Katz, and W. I. Wang, J. Appl. Phys. 70, 3152 (1991).

    Article  ADS  Google Scholar 

  8. G. P. Schwartz, Thin Solid Films 103, 3 (1983).

    Article  ADS  Google Scholar 

  9. Y. Mizokawa, O. Komoda, and S. Miyase, Thin Solid Films 156, 127 (1988).

    Article  ADS  Google Scholar 

  10. Z. Y. Liu, B. Hawkins, and T. F. Kuech, J. Vac. Sci. Technol. B 21, 71 (2003).

    Article  Google Scholar 

  11. S. McDonnell, B. Brennan, E. Bursa, R. M. Wallace, K. Winkler, and P. Baumann, J. Vac. Sci. Technol. B 32, 041201 (2014).

    Article  Google Scholar 

  12. M. Barth, G. B. Rayner, S. McDonnell, Jr., R. M. Wallace, B. R. Bennett, R. Engel-Herbert, and S. Datta, Appl. Phys. Lett. 105, 222103 (2014).

    Article  ADS  Google Scholar 

  13. T. Gotow, S. Fujikawa, H. I. Fujishiro, M. Ogura, W. H. Chang, T. Yasuda, and T. Maeda, AIP Adv. 7, 105117 (2017).

    Article  ADS  Google Scholar 

  14. K. Nishi, M. Yokoyama, H. Yokoyama, T. Hoshi, H. Sugiyama, M. Takenaka, and S. Takagi, Appl. Phys. Express 8, 061203 (2015).

    Article  ADS  Google Scholar 

  15. A. Nainani, Y. Sun, T. Irisawa, Z. Yuan, M. Kobayashi, P. Pianetta, B. R. Bennett, J. Brad Boos, and K. C. Saraswat, J. Appl. Phys. 109, 114908 (2011).

    Article  ADS  Google Scholar 

  16. Y. Lechaux, A. B. Fadjie-Djomkam, M. Pastorek, X. Wallart, S. Bollaert, and N. Wichmann, J. Appl. Phys. 124, 175302 (2018).

    Article  ADS  Google Scholar 

  17. M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, and S. P. Tobin, Appl. Phys. Lett. 52, 2157 (1988).

    Article  ADS  Google Scholar 

  18. J.-F. Fan, H. Oigawa, and Y. Nannichi, Jpn. J. Appl. Phys. 27, L1331 (1988).

    Article  Google Scholar 

  19. M. Perotin, P. Coudray, L. Gouskov, H. Luquet, C. Llinares, J. J. Bonnet, L. Soonckindt, and B. Lambert, J. Electron. Mater. 23, 7 (1994).

    Article  ADS  Google Scholar 

  20. Z. Y. Liu, T. F. Kuech, and D. A. Saulys, Appl. Phys. Lett. 83, 2587 (2003).

    Article  ADS  Google Scholar 

  21. E. V. Kunitsyna, T. V. L’vova, M. S. Dunaevskii, Ya. V. Terent’ev, A. N. Semenov, V. A. Solov’ev, B. Ya. Meltser, S. V. Ivanov, and Yu. P. Yakovlev, Appl. Surf. Sci. 256, 5644 (2010).

    Article  ADS  Google Scholar 

  22. D. M. Murape, N. Eassa, J. H. Neethling, R. Betz, E. Coetsee, H. C. Swart, J. R. Botha, and A. Venter, Appl. Surf. Sci. 258, 6753 (2012).

    Article  ADS  Google Scholar 

  23. M. V. Lebedev, E. V. Kunitsyna, W. Calvet, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 117, 15996 (2013).

    Article  Google Scholar 

  24. M. V. Lebedev, T. V. Lvova, and I. V. Sedova, J. Mater. Chem. C 6, 5760 (2018).

    Article  Google Scholar 

  25. J. A. Robinson and S. E. Mohney, J. Appl. Phys. 96, 2684 (2004).

    Article  ADS  Google Scholar 

  26. L. Zhao, Z. Tan, R. Bai, N. Cui, J. Wang, and J. Xu, Appl. Phys. Express 6, 056502 (2013).

    Article  ADS  Google Scholar 

  27. U. Peralagu, I. M. Povey, P. Carolan, J. Lin, R. Contreras-Guerrero, R. Droopad, P. K. Hurley, and I. G. Thayne, Appl. Phys. Lett. 105, 162907 (2014).

    Article  ADS  Google Scholar 

  28. M. V. Lebedev, K. Ikeda, H. Noguchi, Y. Abe, and K. Uosaki, Appl. Surf. Sci. 267, 185 (2013).

    Article  ADS  Google Scholar 

  29. M. V. Lebedev and T. Mayer, Phys. Status Solidi A 211, 2005 (2014).

    Article  ADS  Google Scholar 

  30. T. V. Lvova, A. L. Shakhmin, I. V. Sedova, and M. V. Lebedev, Appl. Surf. Sci. 311, 300 (2014).

    Article  ADS  Google Scholar 

  31. J. J. Yeah and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).

    Article  ADS  Google Scholar 

  32. D. M. Zhernokletov, H. Dong, B. Brennan, J. Kim, and R. M. Wallace, J. Vac. Sci. Technol. B 30, 04E103 (2012).

  33. G. E. Franklin, D. H. Rich, A. Samsavar, E. S. Hirschorn, F. M. Leibsle, T. Miller, and T.-C. Chiang, Phys. Rev. B 41, 12619 (1990).

    Article  ADS  Google Scholar 

  34. M. T. Sieger, T. Miller, and T.-C. Chiang, Phys. Rev. B 52, 8256 (1995).

    Article  ADS  Google Scholar 

  35. M. Beerbom, Th. Mayer, and W. Jaegermann, J. Phys. Chem. B 104, 8503 (2000).

    Article  Google Scholar 

  36. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994).

    Article  ADS  Google Scholar 

  37. C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001).

    Article  ADS  Google Scholar 

  38. M. V. Lebedev, T. V. Lvova, S. I. Pavlov, and I. V. Sedova, Semiconductors 51, 1093 (2017).

    Article  ADS  Google Scholar 

  39. Z. Y. Liu, D. A. Saulys, and T. F. Kuech, Appl. Phys. Lett. 85, 4391 (2004).

    Article  ADS  Google Scholar 

  40. E. A. Plis, Adv. Electron. 2014, 246769 (2014).

    Article  Google Scholar 

  41. A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, Appl. Phys. Lett. 97, 143502 (2010).

    Article  ADS  Google Scholar 

  42. V. N. Bessolov, M. V. Lebedev, E. B. Novikov, and B. V. Tsarenkov, J. Vac. Sci. Technol. B 11, 10 (1993).

    Article  Google Scholar 

  43. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 113, 20421 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Ethics declarations

The authors claim that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, M.V., Lvova, T.V., Shakhmin, A.L. et al. Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions. Semiconductors 53, 892–900 (2019). https://doi.org/10.1134/S1063782619070169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619070169

Navigation