Skip to main content
Log in

Thermoelectric Properties of Semimetal and Semiconductor Bi1 –xSbx Foils and Wires

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of experimental investigations into the thermoelectric properties (electrical conductivity, thermoelectric power, and thermal conductivity) of microtextured foils and single-crystal wires based on semimetal and semiconductor Bi1 –xSbx alloys are presented in the temperature range of 4.2–300 K. It is found that the band gap ΔE in Bi–17 at % Sb wires increases with decreasing wire diameter d, which is a manifestation of the quantum-size effect. At low temperatures (T < 50 K), in the wires with d < 400 nm, the electrical conductivity increases due to the significant contribution of highly conductive surface states characteristic of topological insulators. It is found for the first time that the thermal conductivity of semimetal Bi–3 at % Sb foils at low temperatures is two orders of magnitude lower, and that of semiconductor Bi–16 at % Sb foils one order of magnitude lower, than that in bulk samples of the corresponding composition due to significant phonon scattering at grain boundaries and surfaces. This effect leads to considerable enhancement of the thermoelectric figure-of-merit ZT and can be used in miniature low-temperature thermoelectric energy converters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Jandl and U. Birkholz, J. Appl. Phys. 76, 7351 (1994).

    Article  ADS  Google Scholar 

  2. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  ADS  Google Scholar 

  3. O. Rabin, Y.-M. Lin, and M. S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).

    Article  ADS  Google Scholar 

  4. Sh. Tang and M. S. Dresselhaus, Phys. Rev. B 89, 045424 (2014).

    Article  ADS  Google Scholar 

  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London, U.K.) 413 (6856), 597 (2001).

    Article  ADS  Google Scholar 

  6. G. A. Mironova, M. V. Sudakova, and Ya. G. Ponomarev, Sov. Phys. JETP 51, 930 (1980).

    ADS  Google Scholar 

  7. Fu Liang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  8. A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B 82, 121302(R) (2010).

  9. R. Takahashi and S. Murakami, Semicond. Sci. Technol. 27, 124500 (2012).

    Article  Google Scholar 

  10. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London, U.K.) 452 (7190), 970 (2008).

    Article  ADS  Google Scholar 

  11. Dong-Xia Qu, K. Roberts Sarah, and G. F. Chapline, Phys. Rev. Lett. 111, 176801 (2013).

    Article  ADS  Google Scholar 

  12. A. V. Demidchik and V. G. Shepelevich, Inorg. Mater. 40, 391 (2004).

    Article  Google Scholar 

  13. A. Nikolaeva, T. E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).

    Article  ADS  Google Scholar 

  14. A. A. Nikolaeva, L. A. Konopko, T. E. Huber, P. P. Bodiul, and I. A. Popov, J. Solid State Chem. 193, 71 (2012).

    Article  ADS  Google Scholar 

  15. I. M. Pilat, S. V. Chaika, N. V. Krugova, and S. I. Pirozhenko, Sov. Phys. Solid State 17, 103 (1975).

    Google Scholar 

  16. J. P. Heremans, Acta Phys. Polon. A 108, 609 (2005).

    Article  Google Scholar 

  17. L. A. Konopko,  A. A. Nikolaeva, T. E. Huber, and J.-P. Ansermet, J. Low Temp. Phys. 185, 673 (2016).

    Article  ADS  Google Scholar 

  18. V. D. Kagan and N. A. Red’ko, Sov. Phys. Solid State 34, 1862 (1992).

    Google Scholar 

  19. V. N. Kopylov and L. P. Mezhov-Deglin, Sov. Phys. JETP 38, 357 (1973).

    ADS  Google Scholar 

  20. P. P. Bodyul, M. P. Boiko, and N. A. Red’ko, Sov. Phys. Solid State 28, 1793 (1986).

    Google Scholar 

  21. B. Lenoir, A. Dauscher, M. Cassat, Yu. I. Ravich, and H. Sherrer, J. Phys. Chem. Solids 59, 129 (1998).

    Article  ADS  Google Scholar 

  22. N. A. Rodionov, G. A. Ivanov, and N. A. Red’ko, Sov. Phys. Solid State 24, 1074 (1982).

    Google Scholar 

  23. Sh. Tang and M. Dresselhaus, Nano Lett. 12, 2021 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nikolaeva.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, A., Konopko, L., Gherghishan, I. et al. Thermoelectric Properties of Semimetal and Semiconductor Bi1 –xSbx Foils and Wires. Semiconductors 53, 657–661 (2019). https://doi.org/10.1134/S1063782619050191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050191

Navigation