Skip to main content
Log in

Thermoelectric Power of a Luttinger Liquid

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The thermoelectric power of a Luttinger liquid with a potential barrier is calculated. The long-range nature of electron–electron interaction is taken into account. It is shown that the increased interaction range changes the temperature dependence of the thermoelectric power qualitatively. At low temperatures, the Seebeck coefficient of a Luttinger liquid is considerably smaller than that of a one-dimensional Fermi gas. As the temperature increases, the thermoelectric power increases rapidly and can exceed that of a Fermi gas. The results obtained are in qualitative agreement with experimental data for quasi-one-dimensional 5-nm-thick InSb wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Voit, Rep. Prog. Phys. 58, 977 (1995).

    Article  ADS  Google Scholar 

  2. T. Giamarchi, Quantum Physics in One Dimension (Oxford Univ. Press, Oxford, 2003).

    Book  MATH  Google Scholar 

  3. C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 76, 3192 (1996).

    Article  ADS  Google Scholar 

  4. Y. V. Ivanov, J. Phys.: Condens. Matter 22, 245602 (2010).

    ADS  Google Scholar 

  5. I. V. Krive, E. N. Bogachek, A. G. Scherbakov, and U. Landman, Phys. Rev. B 63, 113101 (2001).

    Article  ADS  Google Scholar 

  6. I. V. Krive, I. A. Romanovsky, E. N. Bogachek, A. G. Scherbakov, and U. Landman, Low Temp. Phys. 27, 821 (2001).

    Article  ADS  Google Scholar 

  7. I. A. Romanovsky, I. V. Krive, E. N. Bogachek, and U. Landman, Phys. Rev. B 65, 075115 (2002).

    Article  ADS  Google Scholar 

  8. R. Egger and H. Grabert, Phys. Rev. B 58, 10761 (1998).

    Article  ADS  Google Scholar 

  9. K.-H. Yang, Y. Chen, H.-Y. Wang, and Y.-J. Wu, J. Low Temp. Phys. 167, 26 (2012).

    Article  ADS  Google Scholar 

  10. P. Roura-Bas, L. Arrachea, and E. Fradkin, Phys. Rev. B 97, 081104(R) (2018).

  11. G. S. Grest, Phys. Rev. B 14, 5114 (1976).

    Article  ADS  Google Scholar 

  12. A. Theumann, Phys. Rev. B 15, 4524 (1977).

    Article  ADS  Google Scholar 

  13. J. Voit, J. Phys.: Condens. Matter 5, 8305 (1993).

    Google Scholar 

  14. M. Fabrizio and A. O. Gogolin, Phys. Rev. B 51, 17827 (1995).

    Article  ADS  Google Scholar 

  15. A. E. Mattson, S. Eggert, and H. Johannesson, Phys. Rev. B 56, 15615 (1997).

    Article  ADS  Google Scholar 

  16. J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).

    Article  ADS  Google Scholar 

  17. H. Lin, J. M. C. Rauba, K. S. Thygesen, K. W. Jacohsen, M. Y. Simmons, and W. A. Hofer, Front. Phys. China 5, 369 (2010).

    Article  ADS  Google Scholar 

  18. V. Meden, W. Metzner, U. Schollwöck, O. Schneider, T. Stauber, and K. Schönhammer, Eur. Phys. J. B 16, 631 (2000).

    Article  ADS  Google Scholar 

  19. K. Schönhammer, V. Meden, W. Metzner, U. Schollwöck, and O. Gunnarsson, Phys. Rev. B 61, 4393 (2000).

    Article  ADS  Google Scholar 

  20. G. D. Mahan, Many-Particle Physics, 3rd ed. (Kluwer Academic, Plenum, New York, 2000).

    Book  Google Scholar 

  21. M. V. Vedernikov, O. N. Uryupin, B. M. Goltsman, Y. V. Ivanov, and Y. A. Kumzerov, Mater. Res. Soc. Symp. Proc. 691, G8.34.1 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Ivanov.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.V., Uryupin, O.N. Thermoelectric Power of a Luttinger Liquid. Semiconductors 53, 641–646 (2019). https://doi.org/10.1134/S1063782619050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050075

Navigation