Skip to main content
Log in

Thermoelectric Properties of Cobalt Monosilicide and Its Alloys

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Thermoelectric properties of cobalt monosilicide CoSi and (Co1 –xMxSi, M = Fe, Ni) alloys are studied. Alloy compositions with an iron content of up to 10 at % and nickel content of up to 5 at % are examined. The thermoelectric power and electrical resistivity are measured at temperatures in the range 100–800 K. Recent calculations of the band structure of cobalt monosilicide have revealed a number of significant differences from the standard semi-metallic model with the energy overlap of parabolic bands for electrons and holes. This requires the modification of previously employed models to describe the transport properties. The possibility of theoretical description of the experimental temperature and concentration dependences of the thermoelectric power and electrical resistivity with the use of different models for description of the electronic spectrum is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Asanabe, D. Shinoda, and Y. Sasaki, Phys. Rev. A 134, 774 (1964).

    Article  ADS  Google Scholar 

  2. P. V. Gel’d and F. A. Sidorenko, Transition Fourth-Period Metal Silicides (Metallurgiya, Moscow, 1971) [in Russian].

    Google Scholar 

  3. M. I. Fedorov and V. K. Zaitsev, in CRC Handbook of Thermoelectrics, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 1995), p. 321.

    Google Scholar 

  4. V. K. Zaitsev, L. S. Stilbans, V. I. Tarasov, V. I. Fedorov, and N. V. Kolomoets, in Proceedings of the 2nd International Conference on Thermoelectrical Energy Conversion (Arlington, 1978), p. 23.

  5. A. Sakai, F. Ishii, and Y. Onose, J. Phys. Soc. Jpn. 76 (9), 1 (2007).

    Article  Google Scholar 

  6. D. A. Pshenay-Severin, Yu. V. Ivanov, A. A. Burkov, and A. T. Burkov, J. Phys.: Condens. Matter 30, 135501 (2018).

    ADS  Google Scholar 

  7. A. T. Burkov, A. I. Fedotov, A. A. Kas’yanov, R. I. Panteleev, and T. Nakama, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt. 15, 173 (2015).

    Google Scholar 

  8. A. T. Burkov, A. Heinrich, P. P. Konstantinov, T. Nakama, and K. Yagasaki, Meas. Sci. Technol. 12, 264 (2001).

    Article  ADS  Google Scholar 

  9. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, and M. Calandra, J. Phys.: Condens. Matter 29, 465901 (2017).

    Google Scholar 

  10. G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzaru, Comput. Phys. Commun. 185, 422 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Antonov.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, A.S., Novikov, S.V., Pshenay-Severin, D.A. et al. Thermoelectric Properties of Cobalt Monosilicide and Its Alloys. Semiconductors 53, 667–672 (2019). https://doi.org/10.1134/S1063782619050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050038

Navigation