Skip to main content
Log in

Electron-Quantum Transport in Pseudomorphic and Metamorphic In0.2Ga0.8As-Based Quantum Wells

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Metamorphic high-electron-mobility transistor (HEMT) structures based on deep In0.2Ga0.8As/In0.2Al0.8As quantum wells (0.7 eV for Γ electrons) with different metamorphic buffer designs are implemented and investigated for the first time. The electronic properties of metamorphic and pseudomorphic HEMT structures with the same doping are compared. It is found that, over a temperature range of 4–300 K, both the electron mobility and concentration in the HEMT structure with a linear metamorphic buffer are higher than those in the pseudomorphic HEMT structure due to an increase in the depth of the quantum well. Low-temperature magnetotransport measurements demonstrate that the quantum momentum-relaxation time decreases considerably in metamorphic HEMT structures because of enhanced small-angle scattering resulting from structural defects and inhomogeneities, while the dominant scattering mechanism in structures of both types is still due to remote ionized impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Chaturvedi, S. L. Badnikar, and A. A. Naik, in Proceedigns of the 2017 IEEE MTT-S International Microwave and RF Conference, Ahmedabad, India, 2017.

  2. K. Wang, Y. Yan, and X. Liang, in Proceedigns of the 2018 IEEE MTT-S International Wireless Symposium, Chengdu, China, 2018.

  3. T. Paul, M. Harinath, and S. K. Garg, in Proceedigns of the 2017 IEEE MTT-S International Microwave and RF Conference, Ahmedabad, India, 2017.

  4. M. Kasu, S. Fujita, and A. Sasaki, J. Appl. Phys. 66, 3042 (1989).

    Article  ADS  Google Scholar 

  5. N. Chand, T. Henderson, J. Klem, W. Ted Masselink, R. Fischer, Y.-C. Chang, and H. Morkoc, Phys. Rev. B 30, 4481 (1984).

    Article  ADS  Google Scholar 

  6. M. E. Rudinsky, S. Yu. Karpov, H. Lipsanen, and A. E. Romanov, Mater. Phys. Mech. 24, 278 (2015).

    Google Scholar 

  7. H. Sari and H. H. Wieder, J. Appl. Phys. 85, 3380 (1999).

    Article  ADS  Google Scholar 

  8. P. M. Mooney, J. Appl. Phys. 67, R1 (1990).

    Article  ADS  Google Scholar 

  9. A. Malinin, H. Tomozawa, T. Hashizume, and H. Hasegawa, Jpn. J. Appl. Phys. 34, 1138 (1995).

    Article  ADS  Google Scholar 

  10. S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, Chichester, UK, 1992).

    Book  Google Scholar 

  11. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  12. I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, V. G. Mokerov, S. S. Shirokov, R. M. Imamov, and I. A. Subbotin, Semiconductors 42, 1084 (2008).

    Article  ADS  Google Scholar 

  13. R. T. Webster, S. Wu, and A. F. M. Anwar, IEEE Electron Dev. Lett. 21, 193 (2000).

    Article  ADS  Google Scholar 

  14. G. Berthold, E. Zanoni, C. Canali, M. Pavesi, M. Pecchini, M. Manfredi, S. R. Bahl, and J. A. del Alamo, IEEE Trans. Electron Dev. 42, 752 (1995).

    Article  ADS  Google Scholar 

  15. K. Kalna and A. Asenov, Solid-State Electron. 48, 1223 (2004).

    Article  ADS  Google Scholar 

  16. P. Win, Y. Cordier, Y. Druelle, C. Bouillet, J. Favre, and A. Cappy, Microelectron. Eng. 19, 317 (1992).

    Article  Google Scholar 

  17. V. A. Kulbachinskii, L. N. Oveshnikov, R. A. Lunin, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, and P. P. Mal’tsev, Semiconductors 49, 199 (2015).

    Article  ADS  Google Scholar 

  18. N. A. Yuzeeva, A. V. Sorokoumova, R. A. Lunin, L. N. Oveshnikov, G. B. Galiev, E. A. Klimov, D. V. Lavruchin, and V. A. Kulbachinskii, J. Low Temp. Phys. 185, 701 (2016).

    Article  ADS  Google Scholar 

  19. E. Diez, Y. P. Chen, S. Avesque, M. Hilke, E. Peled, D. Shahar, J. M. Cervero[acute], D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 88, 052107 (2006).

    Article  ADS  Google Scholar 

  20. D. Yu. Protasov and K. S. Zhuravlev, Solid-State Electron. 129, 66 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed in the framework of State assignment (no. 8.3887.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Safonov.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinichenko, A.N., Safonov, D.A., Kargin, N.I. et al. Electron-Quantum Transport in Pseudomorphic and Metamorphic In0.2Ga0.8As-Based Quantum Wells. Semiconductors 53, 339–344 (2019). https://doi.org/10.1134/S1063782619030205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619030205

Navigation