Skip to main content
Log in

Subnanosecond Avalanche Switching Simulations of n+nn+ Silicon Structures

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The simulations of recently discovered effect of subnanosecond avalanche switching of Si n+nn+-structures have been performed. The electric field in n+nn+-structure is shown to remain quasi-uniform along the current flow direction during the voltage rise stage and it reaches the effective threshold of impact ionization of ~200 kV/cm in the whole n-base. Comparing simulation results with experiments we argue that the field distribution is as well uniform in the transverse direction. Hense, the ultrafast avalanche transient develops quasi-uniformly in the whole n-base volume. The switching time is about ~150 ps. We compare numerical results obtained for various impact ionization models and estimate parameters of the initial voltage pulse that are required for ultrafast avalanche switching of n+nn+-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. V. Grekhov and A. F. Kardo-Sysoev, Sov. Tech. Phys. Lett. 5, 395 (1979).

    Google Scholar 

  2. Zh. I. Alferov, I. V. Grekhov, V. M. Efanov, A. F. Kardo-Sysoev, V. I. Korol’kov, and M. N. Stepanova, Sov. Tech. Phys. Lett. 13, 454 (1987).

    Google Scholar 

  3. V. I. Brylevskiy, I. A. Smirnova, A. V. Rozhkov, P. N. Brunkov, P. B. Rodin, and I. V. Grekov, IEEE Trans. Plasma Sci. 44, 1941 (2016).

    Article  ADS  Google Scholar 

  4. V. Brylevskiy, I. Smirnova, A. Gutkin, P. Brunkov, P. Rodin, and I. Grekhov, J. Appl. Phys. 122, 185701 (2017).

    Article  ADS  Google Scholar 

  5. R. J. Focia, E. Schamiloghu, C. B. Fleddermann, F. J. Agee, and J. Gaudet, IEEE Trans. Plasma Sci. 25, 138 (1997).

    Article  ADS  Google Scholar 

  6. A. F. Kardo-Sysoev, Ultra-Wideband Radar Technology, Ed. by J. D. Taylor (CRC, Boca Raton, London, New York, Washington, 2001).

    Google Scholar 

  7. I. V. Grekhov, IEEE Trans. Plasma Sci. 38, 1118 (2010).

    Article  ADS  Google Scholar 

  8. V. I. Brylevskiy, I. A. Smirnova, N. I. Podolska, Yu. A. Zharova, P. B. Rodin, and I. V. Grekhov, Tech. Phys. Lett. 44, 160 (2018).

    Article  Google Scholar 

  9. V. Brylevskiy, I. Smirnova, N. Podolska, Yu. Zharova, P. Rodin, and I. Grekhov, in Proceedings of the 2017 IEEE 21st International Conference on Pulsed Power PPC, Brighton, UK, 2017, p. 1.

  10. V. Brylevskiy, I. Smirnova, N. Podolska, Yu. Zharova, P. Rodin, and I. Grekhov, IEEE Trans. Plasma Sci., Spec. Iss. (2018, in press).

  11. SILVACO ATLAS, User Guide. http://www.silvaco.com.

  12. V. I. Brylevskiy, I. A. Smirnova, P. B. Rodin, and I. V. Grekhov, Tech. Phys. Lett. 40, 357 (2014).

    Article  ADS  Google Scholar 

  13. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, New York, 1984).

    Book  Google Scholar 

  14. R. Van Overstraeten, and H. de Man, Solid-State Electron. 13, 583 (1970).

    Article  ADS  Google Scholar 

  15. P. Mars, Int. J. Electron. 32, 23 (1963).

    Article  Google Scholar 

  16. A. G. Chynoweth, Phys. Rev. 109, 1537 (1958).

    Article  ADS  Google Scholar 

  17. C. R. Crowell and S. M. Sze, Appl. Phys. Lett. 9, 242 (1966).

    Article  ADS  Google Scholar 

  18. W. N. Grant, Solid-State Electron. 16, 1189 (1973).

    Article  ADS  Google Scholar 

  19. G. A. Baraff, Appl. Phys. Rev. 128, 2507 (1962).

    ADS  Google Scholar 

  20. Y. Okuto and R. Crowell, Solid-State Electron. 18, 161 (1975).

    Article  ADS  Google Scholar 

  21. T. Lackner, Solid-State Electron. 34, 33 (1991).

    Article  ADS  Google Scholar 

  22. M. Valdinoci, D. Ventura, M. C. Vecchi, M. Rudan, G. Baccarani, F. Illien, A. Stricker, and L. Zullino, in Proceedings of the International Conference Simulations of Semiconductor Processes and Devices SISPAD’99, Kyoto, Japan, 1999, p. 27.

  23. S. Reggiani, E. Gnani, M. Rudan, G. Baccarani, Ch. Corvasce, D. Barlini, M. Ciappa, W. Fichtner, M. Denison, N. Jensen, G. Groos, and M. Stecher, IEEE Trans. Electron Dev. 52, 2290 (2005).

    Article  ADS  Google Scholar 

  24. N. I. Podolska and P. B. Rodin, Tech. Phys. Lett. 43, 527 (2017).

    Article  ADS  Google Scholar 

  25. G. A. Mesyats, A. S. Nasibov, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin, J. Exp. Theor. Phys. 106, 1013 (2008).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank V.I. Brylevskiy, I.V. Grekhov, and I.A. Smirnova for numerous useful discussions and help. This study was supported by the Russian Science Foundation, project no. 14-29-00094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Podolska.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podolska, N.I., Rodin, P.B. Subnanosecond Avalanche Switching Simulations of n+nn+ Silicon Structures. Semiconductors 53, 379–384 (2019). https://doi.org/10.1134/S1063782619030151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619030151

Navigation