Skip to main content
Log in

MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 1010 cm–2. Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), Chap. 2.

    Book  Google Scholar 

  2. A. Chahboun, M. I. Vasilevskiy, N. V. Baidus, A. Cavaco, N. A. Sobolev, M. C. Carmo, E. Alves, and B. N. Zvonkov, J. Appl. Phys. 103, 083548 (2008).

    Article  ADS  Google Scholar 

  3. N. V. Baidus, V. A. Kukushkin, B. N. Zvonkov, and S. M. Nekorkin, Semiconductors 50, 1554 (2016).

    Article  ADS  Google Scholar 

  4. D. L. Huffaker and D. G. Deppe, Appl. Phys. Lett. 73, 520 (1998).

    Article  ADS  Google Scholar 

  5. K. Y. Chuang, C. Y. Chen, T. E. Tzeng, J. Y. Feng, and T. S. Lay, Phys. E (Amsterdam, Neth.) 40, 1882 (2008).

  6. P. Ridha, L. Li, A. Fiore, G. Patriarche, M. Mexis, and P. M. Smowton, Appl. Phys. Lett. 91, 191123 (2007).

    Article  ADS  Google Scholar 

  7. L. H. Li, M. Mexis, P. Ridha, M. Bozkurt, G. Patriarche, P. M. Smowton, P. Blood, P. M. Koenraad, and A. Fiore, Appl. Phys. Lett. 95, 221116 (2009).

    Article  ADS  Google Scholar 

  8. M. Usman, J. Appl. Phys. 110, 094512 (2011).

    Article  ADS  Google Scholar 

  9. M. Usman, S. Heck, E. Clarke, P. Spencer, H. Ryu, R. Murray, and G. Klimeck, J. Appl. Phys. 109, 104510 (2011).

    Article  ADS  Google Scholar 

  10. M. Usman, T. Inoue, Y. Harda, G. Klimeck, and T. Kita, Phys. Rev. B 84, 115321 (2011).

    Article  ADS  Google Scholar 

  11. Y. Ikeuchi, T. Inoue, M. Asada, Y. Harada, T. Kita, E. Taguchi, and H. Yasuda, Appl. Phys. Express 4, 062001 (2011).

    Article  ADS  Google Scholar 

  12. M. M. Sobolev, I. M. Gadzhiyev, I. O. Bakshaev, V. N. Nevedomskiy, M. S. Buyalo, Yu. M. Zadiranov, R. V. Zolotareva, and E. L. Portnoi, Semiconductors 46, 93 (2012).

    Article  ADS  Google Scholar 

  13. P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, Opt. Quant. Electron. 40, 239 (2008).

    Article  Google Scholar 

  14. P. Jayavel, H. Tanaka, T. Kita, O. Wada, H. Ebe, M. Sugawara, J. Tatebayashi, Y. Arakawa, Y. Nakata, and T. Akiyama, Appl. Phys. Lett. 84, 1820 (2004).

    Article  ADS  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Butterworth-Heinenann, Oxford, 1996; Nauka, Moscow, 1988).

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 16-02-00450-a using the instrumental base of the Center for Collective Use of the Scientific–Educational Center “Physics of Solid Nanostructures” of Lobachevsky Nizhny Novgorod State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kukushkin.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidus, N.V., Kukushkin, V.A., Nekorkin, S.M. et al. MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons. Semiconductors 53, 326–331 (2019). https://doi.org/10.1134/S1063782619030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619030047

Navigation