Skip to main content
Log in

Deposition of Silicon Films Doped with Boron and Phosphorus by the Gas-Jet Plasma-Chemical Method

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Doped silicon films are fabricated using diborane and phosphine as doping gases by gas-jet plasma-chemical deposition with the application of an electron beam. The influence of the dopant-gas concentration, the addition of a fluorine-containing gas, and the background pressure on the conductivity and crystalline structure of silicon layers is investigated. Boron-doped amorphous films (a-Si:H) with a conductivity up to 5.2 × 10–3 (Ω cm)–1 are fabricated; when doping with phosphorus, microcrystalline silicon films (mc-Si:H) with a crystallinity up to 70% and conductivity at a level of 1 (Ω cm)–1 are fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Meier, R. Fluckiger, H. Keppner, and A. Shah, Appl. Phys. Lett. 65, 860 (1994).

    Article  ADS  Google Scholar 

  2. A. Gordijn, J. K. Rath, and R. E. I. Schropp, Progr. Photovolt.: Res. Appl. 14, 305 (2006).

    Article  Google Scholar 

  3. K. Yamamoto, A. Nakajima, and M. Yoshimi, Sol. Energy 77, 939 (2004).

    Article  ADS  Google Scholar 

  4. J. Meier, S. Dubail, and A. Shah, Sol. Energy Mater. Solar Cells 74, 457 (2002).

    Article  Google Scholar 

  5. J. E. Hoetzel, O. Caglar, J. S. Cashmore, C. Goury, J. Kalas, M. Klindworth, M. Kupich, G.-F. Leu, M.-H. Lindic, P. A. Losio, T. Mates, B. Mereu, T. Roschek, and I. Sinicco, Sol. Energy Mater. Solar Cells 157, 178 (2016).

    Article  Google Scholar 

  6. H. Sai, T. Matsui, and K. Matsubara, Appl. Phys. Lett. 109, 183506 (2016).

    Article  ADS  Google Scholar 

  7. C. Das, A. Dasgupta, S. C. Saha, and S. Ray, J. Appl. Phys. 91, 9401 (2002).

    Article  ADS  Google Scholar 

  8. S. Klein, F. Finger, R. Carius, H. Wagner, and M. Stutzmann, Thin Solid Films 395, 305 (2001).

    Article  ADS  Google Scholar 

  9. B. Drevillon, C. Godet, and S. Kumar, Appl. Phys. Lett. 50, 1651 (1987).

    Article  ADS  Google Scholar 

  10. K. Ikuta, Y. Toyoshima, S. Yamasaki, A. Matsuda, and K. Tanaka, J. Non-Cryst. Solids 198–200, 863 (1996).

    Article  Google Scholar 

  11. V. G. Shchukin, V. O. Konstantinov, and V. S. Morozov, Tech. Phys. 63, 888 (2018).

    Article  Google Scholar 

  12. R. G. Sharafutdinov, S. Ya. Khmel, V. G. Shchukin, M. V. Ponomarev, E. A. Baranov, A. V. Volkov, O. I. Semenova, L. I. Fedina, P. P. Dobrovolsky, and B. A. Kolesov, Sol. Energy Mater. Solar Cells 89, 99 (2005).

    Article  Google Scholar 

  13. D. Das, M. Jana, A. K. Barua, S. Chattopadhyay, L. C. Chen, and K. H. Chen, Jpn. J. Appl. Phys. 41, 229 (2002).

    Article  ADS  Google Scholar 

  14. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 94, 3582 (2003).

    Article  ADS  Google Scholar 

  15. Y. Baojie, G. Yue, X. Xu, J. Yang, and S. Guha, Phys. Status Solidi A 207, 671 (2010).

    Article  ADS  Google Scholar 

  16. R. G. Sharafutdinov, V. G. Shchukin, and O. I. Seme-nova, Inorg. Mater. 48, 445 (2012).

    Article  Google Scholar 

  17. T. Kamei, P. Stradins, and A. Matsuda, Appl. Phys. Lett. 74, 1707 (1999).

    Article  ADS  Google Scholar 

  18. S. Ray, S. Mukhopadhyay, S. C. Saha, and S. Hazra, Thin Solid Films 337, 7 (1999).

    Article  ADS  Google Scholar 

  19. E. Fathia, Y. Vygranenko, M. Vieirab, and A. Sazonov, Appl. Surf. Sci. 257, 8901 (2011).

    Article  ADS  Google Scholar 

  20. S. Juneja, S. Sudhakar, J. Gope, K. Lodhi, M. Sharma, and S. Kumar, J. Alloys Compd. 643, 94 (2015).

    Article  Google Scholar 

  21. K. Shrestha, V. C. Lopes, A. J. Syllaios, and C. L. Littler, J. Non-Cryst. Solids 403, 80 (2014).

    Article  ADS  Google Scholar 

  22. R. G. Sharafutdinov, V. V. Volchkov, A. I. Ivanov, A. K. Rebrov, and N. I. Kislyakov, Prikl. Mekh. Tekh. Fiz., No. 2, 64 (1973).

  23. A. K. Rebrov, S. F. Chekmarev, and R. G. Sharafutdinov, Prikl. Mekh. Tekh. Fiz., No. 1, 136 (1971).

  24. R. G. Sharafutdinov, N. I. Kislyakov, and A. K. Rebrov, Prikl. Mekh. Tekh. Fiz., No. 2, 42 (1975).

  25. A. K. Rebrov, N. I. Kislyakov, and R. G. Sharafutdinov, Prikl. Mekh. Tekh. Fiz., No. 1, 121 (1973).

  26. P. A. Skovorodko, R. G. Sharafutdinov, V. G. Shchukin, and V. O. Konstantinov, AIP Conf. Proc. 1501, 1437 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by FASO, Russia (project no. 01201350443 “Fundamental Thermophysical Problems in the Growth of Crystals and Films”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Konstantinov.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukin, V.G., Sharafutdinov, R.G. & Konstantinov, V.O. Deposition of Silicon Films Doped with Boron and Phosphorus by the Gas-Jet Plasma-Chemical Method. Semiconductors 53, 127–131 (2019). https://doi.org/10.1134/S1063782619010184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619010184

Navigation