Skip to main content
Log in

Influence of a por-Si Buffer Layer on the Optical Properties of Epitaxial InxGa1 –xN/Si(111) Heterostructures with a Nanocolumnar Film Morphology

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Integrated heterostructures exhibiting a nanocolumnar morphology of the InxGa1 –xN film are grown on a single-crystal silicon substrate (c-Si(111)) and a substrate with a nanoporous buffer sublayer (por-Si) by molecular-beam epitaxy with the plasma activation of nitrogen. Using a complex of spectroscopic methods of analysis, it is shown that the growth of InxGa1 –xN nanocolumns on the por-Si buffer layer offer a number of advantages over growth on the c-Si substrate. Raman and ultraviolet spectroscopy data support the inference about the growth of a nanocolumn structure and agree with the previously obtained X-ray diffraction (XRD) data indicative of the strained, unrelaxed state of the InxGa1 –xN layer. The growth of InxGa1 –xN nanocolumns on the por-Si layer positively influences the optical properties of the heterostructures. At the same half-width of the emission line in the photoluminescence spectrum, the emission intensity for the heterostructure sample grown on the por-Si buffer layer is ~25% higher than the emission intensity for the film grown on the c-Si substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. E. Van Nostrand, K. L. Averett, R. Cortez, J. Boeckl, C. E. Stutz, N. A. Sanford, A. V. Davydov, and J. D. Albrecht, J. Cryst. Growth 287, 500 (2006).

    Article  ADS  Google Scholar 

  2. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, in Proceedings of the Conference on Integrated Optoelectronic Devices, San Jose, CA, 2007 Ed. by H. Morkoc and C. W. Litton, Proc. SPIE 6473, 64730 (2007).

  3. G. F. Yang, Q. Zhang, J. Wang, Y. N. Lu, P. Chen, Z. L. Wu, S. M. Gao, and G. Q. Chen, Rev. Phys. 1, 101 (2016).

    Article  Google Scholar 

  4. S. Albert, A. Bengoechea-Encabo, P. Lefebvre, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, and A. Trampert, Appl. Phys. Lett. 99, 131108 (2011).

    Article  ADS  Google Scholar 

  5. S. Keating, M. G. Urquhart, D. V. P. McLaughlin, and J. M. Pearce, Cryst. Growth Des. 11, 565 (2011).

    Article  Google Scholar 

  6. W. Zhang, X. Zhang, Y. Wang, and F. Hu, Opt. Mater. 72, 422 (2017).

    Article  ADS  Google Scholar 

  7. T. Kouno, M. Sakai, K. Kishino, A. Kikuchi, N. Umehara, and K. Hara, NPG Asia Mater. 8, 1 (2016).

    Article  Google Scholar 

  8. F. R. Hu, K. Ochi, Y. Zhao, and K. Hane, Phys. Status Solidi C 4, 2338 (2007).

    Article  ADS  Google Scholar 

  9. S. Shetty and S. M. Shivaprasad, in Proceedings of the IEEE 2nd International Conference on Emerging Electronics ICEE, Bangalore, India, 2014, p. 1.

  10. C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, and P. Yang, ACS Nano 5, 3970 (2011).

    Article  Google Scholar 

  11. P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, A. V. Zhabotinskiy, and D. N. Nikolaev, Phys. E (Amsterdam, Neth.) 97, 218 (2018).

  12. P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, D. N. Nikolaev, and A. V. Zhabotinskiy, J. Phys. B: Condens. Matter 530, 30 (2018).

    Article  ADS  Google Scholar 

  13. P. V. Seredin, A. S. Lenshin, V. M. Kashkarov, A. N. Lukin, I. N. Arsentiev, A. D. Bondarev, and I. S. Tarasov, Mater. Sci. Semicond. Process. 39, 551 (2015).

    Article  Google Scholar 

  14. A. S. Lenshin, P. V. Seredin, B. L. Agapov, D. A. Minakov, and V. M. Kashkarov, Mater. Sci. Semicond. Process. 30, 25 (2015).

    Article  Google Scholar 

  15. A. S. Len’shin, V. M. Kashkarov, P. V. Seredin, B. L. Agapov, D. A. Minakov, V. N. Tsipenyuk, and E. P. Domashevskaya, Tech. Phys. 59, 224 (2014).

    Article  Google Scholar 

  16. V. M. Kashkarov, A. S. Len’shin, P. V. Seredin, B. L. Agapov, and V. N. Tsipenuk, J. Surf. Invest.: X-ray Synchrotr. Neutron Tech. 6, 776 (2012).

    Article  Google Scholar 

  17. P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Phys. B (Amsterdam, Neth.) 405, 2694 (2010).

  18. P. V. Seredin, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and A. L. Stankevich, Semiconductors 47, 7 (2013).

    Article  ADS  Google Scholar 

  19. S. Lazić, E. Gallardo, J. M. Calleja, F. Agulló-Rueda, J. Grandal, M. A. Sánchez-Garcia, and E. Calleja, Phys. E (Amsterdam, Neth.) 40, 2087 (2008).

  20. E. San Andrés, A. del Prado, F. L. Martínez, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys. 87, 1187 (2000).

    Article  ADS  Google Scholar 

  21. M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, Appl. Phys. Lett. 83, 4761 (2003).

    Article  ADS  Google Scholar 

  22. R. J. Briggs and A. K. Ramdas, Phys. Rev. B 13, 5518 (1976).

    Article  ADS  Google Scholar 

  23. L. Teng,  R. Zhang, Z.-L. Xie, T. Tao, Z. Zhang, Y.-C. Li, B. Liu, P. Chen, P. Han, and Y.-D. Zheng, Chin. Phys. Lett. 29, 027803 (2012).

    Article  ADS  Google Scholar 

  24. M. R. Correia, S. Pereira, J. Frandon, M. A. Renucci, E. Alves, A. D. Sequeira, and N. Franco, Phys. Status Solidi C 0, 563 (2003).

    Article  Google Scholar 

  25. M. Wólz, M. Ramsteiner, V. M. Kaganer, O. Brandt, L. Geelhaar, and H. Riechert, Nano Lett. 13, 4053 (2013).

    Article  ADS  Google Scholar 

  26. P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, A. S. Lenshin, M. S. Smirnov, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 46, 719 (2012).

    Article  ADS  Google Scholar 

  27. P. V. Seredin, A. S. Lenshin, A. V. Glotov, I. N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, T. Prutskij, H. Leiste, and M. Rinke, Semiconductors 48, 1094 (2014).

    Article  ADS  Google Scholar 

  28. K. P. O’Donnell, J. F. W. Mosselmans, R. W. Martin, S. Pereira, and M. E. White, J. Phys.: Condens. Matter 13, 6977 (2001).

    ADS  Google Scholar 

  29. V. A. Volodin, M. D. Efremov, V. Y. Prints, V. V. Preobrazhenskii, B. R. Semyagin, and A. O. Govorov, JETP Lett. 66, 47 (1997).

    Article  ADS  Google Scholar 

  30. P. V. Seredin, V. M. Kashkarov, I. N. Arsentyev, A. D. Bondarev, and I. S. Tarasov, Phys. B: Condens. Matter 495, 54 (2016).

    Article  ADS  Google Scholar 

  31. P. V. Seredin, A. S. Lenshin, D. L. Goloshchapov, A. N. Lukin, I. N. Arsentyev, A. D. Bondarev, and I. S. Tarasov, Semiconductors 49, 915 (2015).

    Article  ADS  Google Scholar 

  32. A. B. Kuzmenko, Rev. Sci. Instrum. 76, 83 (2005).

    Article  Google Scholar 

  33. V. Lucarini, K.-E. Peiponen, J. J. J. Saarinen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research, Vol. 110, Ed. by W. T. Rhodes (Springer, Berlin, New York, 2005).

  34. Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  35. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 6534 (1995).

    Article  ADS  Google Scholar 

  36. P. Specht, J. C. Ho, X. Xu, R. Armitage, E. R. Weber, R. Erni, and C. Kisielowski, Solid State Commun. 135, 340 (2005).

    Article  ADS  Google Scholar 

  37. J. Tauc, Prog. Semicond. 9, 87 (1965).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the President of the Russian Federation, grant RF MD-188.2017.2.

The part of the study concerned with growth experiments was supported by the Ministry of Education and Science of the Russian Federation, government order no. 16.9789.2017/BCh.

The part of the study of the possibility of controlling the morphology and composition of bulk and porous substrates was supported by Ioffe Institute. The part of the study concerned with the diagnostics of integrated structures was supported by the Ministry of Education and Science of the Russian Federation, government order to institutes of higher education in the field of research activities for 2017–2019, project no. 11.4718.2017/8.9.

We are grateful to the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf) of Forschungszentrum Karlsruhe for providing access to equipment at their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Seredin.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredin, P.V., Goloshchapov, D.L., Zolotukhin, D.S. et al. Influence of a por-Si Buffer Layer on the Optical Properties of Epitaxial InxGa1 –xN/Si(111) Heterostructures with a Nanocolumnar Film Morphology. Semiconductors 53, 65–71 (2019). https://doi.org/10.1134/S1063782619010172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619010172

Navigation